
Unintended Behavior in Learning-Enabled Systems:
Detecting the Unknown Unknowns

Darren Cofer
Collins Aerospace

darren.cofer@collins.com

Abstract—One of the important certification objectives for
airborne software is demonstrating the absence of unintended
behavior. In current software development processes, unintended
behavior is associated with some identifiable structural feature,
such as specific lines of code or a model element. However, in
learning-enabled systems (like neural networks or other machine
learning approaches), unintended behavior emerges from the data
used to train the system. New inputs not encountered during
training may result in novel activations in a neural network,
leading to unexpected (and potentially dangerous) outputs. In
this paper we will first review the rationale and methods for
detecting unintended behavior in current airborne software
systems, including the use of model based development techniques
and formal methods for software verification. Then we will
consider the challenges posed by learning-enabled components
(LECs) and examine new techniques that are being developed to
address these challenges, as well as how these techniques may
shape new certification guidance.

Index Terms—machine learning, certification, assurance

I. INTRODUCTION

Reports that say that something hasn’t happened are
always interesting to me, because as we know, there
are known knowns; there are things we know we
know. We also know there are known unknowns;
that is to say we know there are some things we do
not know. But there are also unknown unknowns–
the ones we don’t know we don’t know. And if one
looks throughout the history of our country and other
free countries, it is the latter category that tends to
be the difficult ones.

—Donald Rumsfeld [5]
For software in commercial aircraft, DO-178C [15] provides

the latest version of guidance regarding software aspects of
certification and is used by the aviation industry and regulators
as a means of compliance with airworthiness regulations.
At a high level, DO-178C helps manufacturers achieve two
main goals: 1) to demonstrate that software complies with
its requirements (intended functionality), and 2) that it does
nothing unexpected (unintended functionality). Unintended
functionality or unintended behavior can therefore be defined
as software behavior than cannot be traced back to any require-
ment. Unintended behaviors are the “unknown unknowns” that
need to be detected and eliminated from software to ensure
that there are no surprises during aircraft operation that might
impact safety.

This can be a challenge for many systems based on machine
learning technologies such as neural networks. In this paper we

will refer to such technology as learning-enabled components
(LECs). In a typical LEC, much of the complexity and design
information resides in its training data rather than in the actual
models or code produced in the training process. One of
the key principles of avionics software certification (covered
in DO-178C) is the use of requirements-based testing along
with structural coverage metrics. These activities not only
demonstrate compliance with functional requirements, but are
intended to show the absence of unintended functionality.
However, it can be difficult to precisely state requirements
for LECs, especially those implementing perception functions.
Even when requirements are available, it is usually not pos-
sible to associate any particular lines of code with a specific
requirement. Furthermore, complete structural coverage (using
current metrics) can be achieved for a typical neural network
with a single test case, but this provides almost no confidence
in its correctness. Showing that a component or system is
correct and does not do harm because of behaviors that were
unintended by designers or unexpected by operators is a
critical aspect of the certification process.

An illustration of unintended behavior made the news when
a self-driving car being tested by Uber in Tempe, AZ in 2018
ran into a pedestrian [13]. According to documents released
as part of the government investigation, the learning-enabled
software in the vehicle was not designed to detect pedestrians
outside of a crosswalk. This incident highlights at least two
challenges faced by LECs: 1) producing complete and precise
requirements for perception-based systems, and 2) responding
safely to unexpected or novel inputs to the system.

In another incident the same year, a Tesla vehicle operated
using its Autopilot feature crashed into a concrete lane divider
[18]. The vehicle was in an autosteering mode with adaptive
cruise control (maintaining a fixed distance from the car ahead)
when it veered into the area between two marked lanes.
One possibility that has been suggested is that the vehicle
was confused by the concrete lane divider as the adaptive
cruise system was designed to ignore stationary objects along
the road to avoid false alarms. This may have resulted in
unintentionally ignoring an actual hazard.

Given these challenges and the current state of the art, why
would we consider using LECs in safety-critical systems?
It is because LEC technologies are capable of providing
advanced functionality that can be of tremendous benefit in
many systems:

• LECs can implement functions that would not be pos-



sible with traditional methods. Perception functions for
rapid identification and classification of objects in images
can be implemented by deep neural networks. Complex
highly non-linear functions that may not even have a
closed-form solution can be learned from easily produced
simulation data.

• LECs can provide reduced computation time for complex
functions, leveraging parallelism in GPUs or FPGAs.
They can be used to replace large table lookups, dra-
matically reducing memory requirements on resource-
constrained platforms.

• LECs can learn from new data gathered during operation
to continuously improve performance and adapt to new
situations. Note, however, that in this paper we are
limiting the scope to systems that are trained offline.

The challenge now for manufacturers and regulators is to
determine how can we provide safety assurance for LECs that
is comparable to systems built using traditional technologies.

This paper provides a summary of the current situation
with regard to certification of LECs, focusing on unintended
behavior. In section II we describe what certification standards
require now for detecting and eliminating unintended behavior
in commercial airplane software. In section III we consider the
ways in which current methods are incompatible with LECs.
Section IV describes new methods and technologies that may
help address this problem. In section V we summarize recent
activity to develop new certification guidance specifically for
LECs.

II. CURRENT CERTIFICATION GUIDANCE

In this section we provide an overview of current certifica-
tion guidance for assuring the correctness of aircraft software.

A. DO-178C

The development process described in DO-178C begins
with system requirements that have been allocated to software
for implementation. These system requirements are subse-
quently refined into high-level requirements, low-level require-
ments, and software architecture, from which source code is
produced and ultimately compiled into executable object code.

According to DO-178C, the purpose of software verification
is to detect errors that may have been introduced during soft-
ware development. More specifically, the software verification
process must verify that “the Executable Object Code satisfies
the software requirements (that is, intended function), and pro-
vides confidence in the absence of unintended functionality.”
(sec. 6.1.d).

Software verification activities in DO-178C center on
requirements-based testing. Coverage refers to the extent
to which a verification activity satisfies its objectives. Two
specific measures of test coverage required in DO-178C are
requirements coverage and structural coverage.

Requirements coverage analysis determines how well the
requirements-based testing verified the implementation of the
software requirements (section 6.4.4.1), and establishes trace-
ability between the software requirements and the test cases.

Requirements coverage analysis should show that test cases
exist for each software requirement, and that the test cases
satisfy the criteria for normal and robustness (abnormal range
inputs) testing.

Verification that provides complete requirements coverage is
not necessarily a thorough test of the software. For example:

• The software requirements and the design description
may not accurately specify all of the behavior in the
executable object code.

• The software requirements may be too abstract and do not
ensure that all the behaviors implemented in the source
code are tested.

Structural coverage analysis determines how much of the
code structure was not executed by the requirements-based
tests (6.4.4.2), and establishes traceability between the code
structure and the test cases. Three different coverage metrics
are defined, with the more rigorous metrics applied to code
that is more safety-critical: 1) statement coverage, 2) deci-
sion (or branch) coverage, and 3) modified condition/decision
coverage. These are all based on assessing the control flow
among statements in the source code, including the logical
expressions that govern that flow. An excellent tutorial on
structural coverage in DO-178 can be found in [8]

DO-248C, Supporting Information for DO-178C and DO-
278A [16], provides further rationale for structural coverage
analysis. FAQ #43 states that structural coverage analysis (and
associated resolution of coverage shortcomings) are intended
to:

• Show that the code structure was verified to the degree
required for the applicable software criticality level.

• Establish the thoroughness of requirements-based testing.
• Support demonstration of the absence of unintended

functions.
The FAQ observes that requirements-based testing alone

cannot completely verify the absence of unintended function-
ality. This is because code that is implemented without being
linked to requirements may not be exercised by requirements-
based tests, and this code could result in unintended func-
tionality. Structural coverage analysis was added to address
this problem. If requirements-based testing shows that all
intended functions are properly implemented, and if structural
coverage analysis shows that all existing code is reachable and
adequately tested, these two together provide a greater level
of confidence that there is no unintended functionality.

B. DO-331

Guidance for model-based software development is pro-
vided in DO-331 [17], Model-Based Development and Ver-
ification Supplement to DO-178C and DO-278A.

It is common in model-based development (MBD) processes
for source code to be generated directly from a design model
that corresponds to traditional low-level software require-
ments. MBD processes introduce a new concern related to un-
intended behavior. Model elements implementing unintended
behavior could inadvertently make it into the design model and



subsequently result in source code through the code generation
process. Such code may not be detected by structural coverage
testing because it traces to a model element that is now part
of the low-level requirements (i.e., the corresponding code is
exercised by a requirements-based test case).

For this reason, DO-331 introduced new objectives for
model coverage analysis (MB.6.7) showing that all model
elements have been exercised by requirements-based model
verification activities. To facilitate this analysis, every model
must have identified requirements from which the model was
developed (MB.1.6.1).

Model coverage analysis is defined as an analysis that
determines which requirements expressed by a design model
were not exercised by verification based on the requirements
from which the model was developed. The stated purpose is
to support the detection of unintended behavior in the design
model.

Coverage of the requirements from which the model was
developed must be achieved by the requirements-based ver-
ification cases. Model coverage analysis is different from
structural coverage analysis and therefore model coverage
analysis does not eliminate the need to achieve the objectives
of structural coverage analysis per DO-178C section 6.4.4.2.

C. DO-333

Guidance for the use of formal methods in the certification
process is provided in DO-333, Formal Methods Supplement
to DO-178C and DO-278A. This document describes how
mathematical analysis tools based on formal logic can be
used to satisfy verification objectives. It includes provisions
for performing coverage analysis when using formal methods.

Requirements coverage is essentially unchanged from DO-
178C in that applicants must demonstrate that all requirements
have been verified by formal analysis, and establish trace-
ability between the software requirements and the verification
cases. The need for structural coverage analysis, however, is
based on the impracticality of achieving exhaustive testing and
the consequent need to establish metrics to ensure that the
testing performed is rigorous and sufficient. Unlike testing, the
use of formal methods may provide an exhaustive assessment
of the software. However, additional activities are required to
achieve comparable coverage analysis.

The additional activities are intended to show that the
software requirements are complete and precisely specified,
that the analysis itself is complete (corresponding to a math-
ematical proof), and that all assumptions in the analysis have
been justified.

Formal analysis can show that there are no inputs to the
system that result in incorrect or unintended behaviors. How-
ever, this does not demonstrate the absence of extraneous code
— it just shows that such code cannot impact the observable
software behavior. Additional activities (analyses or reviews)
must be performed to detect unintended dataflow relationships
in the software, and to detect unreachable or deactivated code.

III. CHALLENGES PRESENTED BY LECS

LECs present unique challenges that may be barriers to the
use of traditional, model-based, or formal methods guidance
currently defined in DO-178C and its supplements. Fundamen-
tally, this is due to the reliance on requirements-based testing
(or verification) and structural coverage metrics, as described
in the previous section.

It should be obvious that requirements-based testing re-
quires requirements. Clearly stated requirements are also a
necessary part of MBD and formal methods development
and verification processes. However, the ability to implement
complex functionality by learning from data in the absence
of clear requirements and to generalize when faced with new
data is actually a strength of machine learning. It may be pos-
sible and necessary to retroactively add high-level functional
requirements to LEC designs, but this is often not the usual
starting point.

Even when requirements are available, it is still difficult
to determine whether enough testing has been performed to
provide a complete assessment of an LEC design and provide
confidence in the absence of unintended behaviors.

Structural coverage metrics were constructed with the un-
derstanding that much of the complexity of traditional software
is manifested in the logical decisions that are being imple-
mented. This logic should be traceable to specific software
requirements. When requirements-based tests fail to exercise
part of the software logic as revealed by structural coverage
metrics, it is reasonable to conclude that something is amiss
(either a missing requirement or some unintended function).

Since neural networks do not primarily implement logical
decisions, structural coverage can usually be achieved with one
test case (or possibly a small number of them). Individual lines
of code in the software representation of a neural network do
not represent design choices that implement specific require-
ments. Therefore, current structural coverage metrics are not
helpful in identifying unintended behaviors.

Software testing remains a critical challenge for machine
learning systems and new approaches will be needed to
take the place of traditional assurance methods. An excellent
summary of the current state is provided in [12]. Some of the
relevant additional challenges include:

• Missing test oracles. Automated oracles defining the
correct outputs of LECs are typically not available and
great effort must be dedicated to manually labeling of test
data.

• Infeasibility of complete testing. LECs typically must
deal with large amounts of data and testing is rarely able
to cover all valid combinations of inputs. Neuron cov-
erage metrics inspired by traditional structural coverage
metrics have been shown to miss erroneous behaviors.
Test suites providing complete neuron coverage do not
identify networks that are vulnerable to trivial adversarial
attacks. Extensions looking at neuron interactions or
boundary values can be limited by scalability.



• Quality of test datasets. Good LEC training requires a
large dataset, but effective testing must be done with
yet another large and independent dataset. Creating or
deriving high-quality test datasets remains a challenge.

• Vulnerability to adversaries. LECs have been shown to
be vulnerable to attacks where small input modifications
lead to misclassifications or significant loss of accuracy.
In some cases, the adversarial inputs demonstrated are
unrealistic (setting specfic pixel values in an image) and
could be ruled out as sufficiently improbable. Useful test
cases must be able to expose these vulnerabilities yet still
be realistic for the input domain.

• Evaluating robustness. Small changes in LEC inputs may
result in large changes in its outputs, and it is difficult to
generate useful test data to measure how well the system
tolerates noise.

Before moving on, let us consider feedback control systems
and whether their structure and implementation provide a
precedent for addressing LEC assurance concerns. Feedback
control is used in safety-critical aviation systems and is obvi-
ously certified using current guidance and processes. Perhaps
the same approach or something analogous can be used for
LECs.

A typical control system can be described by the equation
ẋ = Ax + Bu, where x is the state vector for the system
and u is a vector of inputs. This equation for ẋ describes
the system dynamics, computing the derivative for each state
element based on the current state and inputs. The linear
algebra computations involved bear some similarity to the
computations performed in a neural network inference model
(ignoring the activation functions in the neural net). We might
say that there is no real traceability between particular entries
in the A and B matrices and the system requirements, and
that a neural network should be no more or less challenging
from an assurance standpoint.

However, there are two important differences:
• For a typical aircraft feedback control system the matrices

may have tens of entries, but a typical neural network
(trained to perform a perception task) may include mil-
lions of weights.

• While the entries in the control system matrix may not
trace directly to requirements, their specific values are
determined by an extremely well-understood theoretical
framework, and the control characteristics implemented
using that framework definitely trace to the system re-
quirements.

In conclusion, LECs and their software implementations
break many of the assumptions that are the basis for current
certification processes. In particular, the design intent cannot
be inferred from an examination of an LEC model or its
software implementation.

IV. NEW ASSURANCE APPROACHES FOR LECS

LEC assurance for safety-critical applications in an active
area of research. New approaches are being developed and

demonstrated, including the use of formal methods for LEC
verification, new testing methods and coverage metrics, and
architectural mitigations using run-time monitoring.

New formal methods tools are in development that permit
mathematical analysis of neural network models. These are
currently limited by scale and the need to precisely define
requirements for analysis, but they are making rapid progress
and have been used to prove critical robustness properties for
real systems.

A recent example is the Marabou framework for verify-
ing deep neural networks [11]. Marabou combines an SMT
(satisfiability modulo theories) solver with a custom linear
programming engine to answer queries about neural network
properties. It can handle networks with piecewise linear ac-
tivation functions (such as rectified linear units, or ReLUs)
and topologies including fully-connected feed-foreword and
convolutional neural networks. Marabou performs high-level
reasoning on the network to reduce the search space and
also supports parallel execution to further enhance scalability.
Marabou accepts multiple input formats, including protocol
buffer files generated by the TensorFlow framework.

Marabou’s predecessor (Reluplex) was used to successfully
analyze and prove behavioral properties about the ACAS-Xu
collision avoidance system for unmanned air vehicles [10]. In
this system, a 2GB lookup table was reimplemented as 45
neural networks, occupying a total of 3MB. Safety properties
of these neural networks were verified using Reluplex.

LECs implementing perception functions are still beyond
the reach of formal verification tools due to their size (millions
of neurons and weights) and lack of precise requirements.

New testing methods are being developed for neural net-
works and other LECs. An important aspect of this work is
defining new coverage metrics that can be used to improve the
completeness of testing and increase confidence in the absence
of unintended behaviors.

A new approach to test generation based on manifold space
techniques is described in [2]. A manifold is a topological
space that is locally Euclidean, like the surface of the earth,
allowing us to reason about nearby points in a straightforward
way even though the actual space is quite complex. The
approach is based on the premise that patterns in a large
input data space can be effectively captured in a smaller
manifold space, from which similar yet novel test cases can
be sampled and generated. Tools exist to learn and capture
this manifold space, and a search technique is applied to
efficiently find fault-revealing inputs. Experiments show that
this approach enables generation of thousands of realistic
yet fault-revealing test cases efficiently even for well-trained
models. This approach may also provide the basis for a
meaningful metric of completeness for a test dataset based
on the embedded manifold.

Since it is difficult to demonstrate assurance by examining
the LEC design (as is assumed by existing certification pro-
cesses), other approaches based on run-time monitoring and
enforcement may be effective.



Run-time assurance architectures add high-assurance com-
ponents to the system to ensure that an LEC cannot cause
unsafe or unintended system behaviors. Run-time monitors
continuously check variables related to the system state, inputs
to the LEC, or outputs produced by the LEC and intervene to
switch to a backup function that is proven to be safe. Monitors
may be used to detect anomalous inputs that are outside of the
data distribution used to train the system and therefore could
lead to unintended behavior. The main idea is that system
performance is provided by the LEC while system safety is
guaranteed by high-assurance components (though with lower
performance).

In the DARPA Assured Autonomy project we have used a
run-time assurance architecture based on the ASTM F3269-17
standard for bounded behavior of complex systems [1], also
known as a simplex architecture [14]. The standard provides
guidance for mitigating unintended functionality through the
use of run-time monitors. The LEC may still contain unin-
tended functionality, but the architecture ensures that there will
be no impact on system safety. This approach essentially uses
the verified properties of the architecture, run-time monitor,
and safety backup functions to justify a reduced level of
criticality for the LEC.

The “TaxiNet” run-time assurance demonstration is de-
scribed in [4]. The baseline system consisted of the aircraft
(or simulation), the guidance LEC, a controller for steering
the aircraft, and the Vehicle Management System (VMS)
which manages actuators on the aircraft and integrates other
autonomy functionality. The LEC was implemented as a deep
neural network (DNN) trained to estimate the cross-track error
(CTE) of the aircraft (position left or right of the runway
centerline) based on images from a forward-looking camera on
the aircraft. Since the images are 360x200 pixels, the resulting
LEC is larger than can be analyzed by current formal methods
tools for DNNs, such as Marabou.

The run-time assurance architecture added four different
run-time monitors (three for system safety, one for LEC
confidence), a Monitor Selector for choosing which monitor
to use at any time, and a Contingency Manager to determine
when intervention is needed to maintain safety and what action
should be taken. In this example, the safety actions available
(via the VMS) were to reduce the commanded aircraft speed
or to use the brakes to halt the aircraft.

We tested the architecture in a variety of simulated en-
vironmental conditions with both well-trained and poorly-
trained LECS to assess baseline performance, intervention of
the assurance architecture in the presence of LEC errors, and
absence of unnecessary intervention (false alarms). We found
that the architecture performed in accordance with expecta-
tions in all scenarios. In every case where a faulty LEC caused
the aircraft to deviate from the required centerline tracking
performance, the assurance architecture detected the condition
and slowed or halted the aircraft. At no time was the aircraft
allowed to depart from the paved runway. Furthermore, we did
not observe any false alarms, meaning that the architecture
never intervened when the aircraft was performing within

requirements and correctly tracking the runway centerline.

V. NEW CERTIFICATION GUIDANCE

There are a number of parallel efforts underway to develop
new certification guidance supporting the use of LECs in
aviation applications.

The European Union Aviation Safety Agency (EASA) has
published its Artificial Intelligence Roadmap 1.0 [6] which
establishes an initial vision for safety in the development
of LECs in the aviation domain. Important contributions
include the definition of “trustworthiness building blocks” for
LECs and publication of a proposed timeline, calling for first
approvals of LECs (used in an advisory role) around 2025.

EASA has also published a report on a research effort
addressing the challenges posed by the use of LECs in aviation
entitled Concepts of Design Assurance for Neural Networks
[3]. The report describes a W-shaped development life-cycle
that adds training processes in the middle of the traditional V-
shaped life-cycle. It also investigates theoretical and practical
generalization bounds as a means of establishing confidence
that an LEC will perform as intended when faced with novel
inputs.

Another recent publication is EASA’s concept paper on First
Usable Guidance for Level 1 Machine Learning Applications
[7]. “Level 1” in this context refers to applications in which
the LEC is providing assistance to a human operator as
opposed to human/machine collaboration or autonomy. The
report describes a set of candidate objectives to be satisfied
by developers of Level 1 LECs and is intended to provide
visibility into regulatory expectations for such systems.

These reports are being used as inputs by the joint SAE
committee G34 and EUROCAE working group WG-114,
Artificial Intelligence in Aviation. WG-114 was formed in 2019
and shortly thereafter merged with G34 to work together to ad-
dress certification of aeronautical systems implementing artifi-
cial intelligence technologies. The goals of the joint committee
are to create and maintain reports and recommended practices
on the implementation and certification aspects related to
AI technologies, including both airborne and ground-based
systems needed for the safe operation of aerospace vehicles.
The principle work product of the committee will be a new
standard: AS6983 Process Standard for Development and Cer-
tification/Approval of Aeronautical Safety-Related Products
Implementing AI.

The detection and elimination of unintended behaviors has
been identified by the committee as a key concern to be
addressed by the guidance documents ultimately published. A
number of means to achieve this goal are under consideration,
looking at different points in the development life-cycle. These
include assessments of the completeness and representative-
ness of the training and test datasets, new structural coverage
metrics (though the specifics have yet to be agreed upon), and
the use of run-time assurance approaches at the system design
level.

One final effort worth noting is the Overarching Properties
initiative, which followed from the 2016 U.S. Federal Avia-



tion Administration (FAA) “Streamlining Assurance Processes
Workshop.” The Overarching Properties (OP) are the product
of a multi-year, international effort to develop a minimum set
of properties sufficient for use in the approval process. A more
detailed explanation of the OP can be found in [9].

The three OP as currently defined are:
• Intent: The defined intended behavior is correct and

complete with respect to the desired behavior.
• Correctness: The implementation is correct with respect

to its defined intended behavior, under foreseeable oper-
ating conditions.

• Innocuity: Any part of the implementation that is not
required by the defined intended behavior has no unac-
ceptable impact.

Innocuity captures the goal of eliminating unintended be-
havior — that is, any behavior that is not included in the
defined intended behavior of the system. Innocuity specifically
does not restrict the implementation to only contain items
which are required by the defined intended behavior. Such
things may be necessary when a system is implemented from
previously developed items. Rather, it requires that nothing
extra in the implementation can negatively affect safety.

VI. CONCLUSION

For most applications, the best performance that may be
currently expected from an LEC (for image classification, for
example) is around 99% correct. This is very far from the
10−6 probability of failure per hour that may be required for
a reliable subsystem or 10−9 for aircraft systems with the
highest integrity requirements.

We may be better off not thinking of a safety-critical LEC
as software that must be verified to meet its allocated system
requirements, but rather from the perspective of hardware
reliability. Fault-tolerant design principles can then provide
guidance for how to use redundancy and fail-safe design
mechanisms to achieve the higher levels of reliability required
in aircraft systems.

This leaves us with three alternatives:
• Determine that the reliability actually achievable by an

LEC is acceptable for a given application.
• Architect the system using principles of fault-tolerant

design to achieve higher levels of reliability.
• Reject the use of an LEC and implement the system using

traditional non-learning-based methods.
At the present time, there is no agreed upon solution to the

detection and elimination of unintended behavior in LECs.
The fundamental problem is that LECs were never imagined
to be able to provide guarantees of correctness. They are
best applied to challenging problem domains where traditional
approaches are less effective but where the ability to learn
and generalize from large amounts of data can provide unique
capabilities. LEC assurance for safety-critical systems remains
an active area of research. In all likelihood, certification
guidance under development will rely on a combination of
techniques, each contributing some bit of assurance evidence.

Acknowledgment: This work was funded by DARPA con-
tract FA8750-18-C-0099. The views, opinions and/or findings
expressed are those of the author and should not be interpreted
as representing the official views or policies of the Department
of Defense or the U.S. Government. Approved for Public
Release, Distribution Unlimited.

REFERENCES

[1] ASTM F3269-17. Standard practice for methods to safely bound flight
behavior of unmanned aircraft systems containing complex functions,
2017.

[2] Taejoon Byun, Abhishek Vijayakumar, Sanjai Rayadurgam, and Dar-
ren D. Cofer. Manifold-based test generation for image classifiers. In
IEEE International Conference On Artificial Intelligence Testing, AITest
2020, Oxford, UK, August 3-6, 2020, pages 15–22. IEEE, 2020.

[3] Jean Marc Cluzeau, Xavier Henriquel, Georges Rebender, Guillaume
Soudain, Luuk van Dijk, Alexey Gronskiy, David Haber, Corentin Perret-
Gentil, and Ruben Polak. Concepts of Design Assurance for Neural Net-
works (CoDANN). https://www.easa.europa.eu/sites/default/files/dfu/
EASA-DDLN-Concepts-of-Design-Assurance-for-Neural-Networks-
CoDANN.pdf, Mar 31, 2020.

[4] Darren D. Cofer, Isaac Amundson, Ramachandra Sattigeri, Arjun Passi,
Christopher Boggs, Eric Smith, Limei Gilham, Taejoon Byun, and Sanjai
Rayadurgam. Run-Time Assurance for Learning-Based Aircraft Taxiing.
In Digitial Avionics Systems Conference (DASC), 2020.

[5] CSPAN. Defense Department Briefing. https://www.c-span.org/video/
?168646-1/defense-department-briefing, Feb 12, 2002.

[6] EASA. Artificial Intelligence Roadmap 1.0: A human-centric approach
to AI in aviation. https://www.easa.europa.eu/sites/default/files/dfu/
EASA-AI-Roadmap-v1.0.pdf, 2020.

[7] EASA. EASA Concept Paper: First usable guidance for Level
1 machine learning applications. https://www.easa.europa.eu/sites/
default/files/dfu/easa concept paper first usable guidance for level
1 machine learning applications - proposed issue 01 1.pdf, April
2021.

[8] Kelly Hayhurst, Dan Veerhusen, John Chilenski, and Leanna Rierson.
A practical tutorial on modified conditiondecision coverage. NASA
Technical report TM-2001-210876, 2001.

[9] C. Michael Holloway. Understanding the Overarching Properties. NASA
Technical report TM-2019–220292, 2019.

[10] Guy Katz, Clark W. Barrett, David L. Dill, Kyle Julian, and Mykel J.
Kochenderfer. Reluplex: An efficient SMT solver for verifying deep
neural networks. In Rupak Majumdar and Viktor Kuncak, editors,
Computer Aided Verification - 29th International Conference, CAV 2017,
Heidelberg, Germany, July 24-28, 2017, Proceedings, Part I, volume
10426 of Lecture Notes in Computer Science, pages 97–117. Springer,
2017.

[11] Guy Katz, Derek A. Huang, Duligur Ibeling, Kyle Julian, Christopher
Lazarus, Rachel Lim, Parth Shah, Shantanu Thakoor, Haoze Wu, Alek-
sandar Zeljic, David L. Dill, Mykel J. Kochenderfer, and Clark W.
Barrett. The marabou framework for verification and analysis of deep
neural networks. In Isil Dillig and Serdar Tasiran, editors, Computer
Aided Verification - 31st International Conference, CAV 2019, New York
City, NY, USA, July 15-18, 2019, Proceedings, Part I, volume 11561 of
Lecture Notes in Computer Science, pages 443–452. Springer, 2019.

[12] Dusica Marijan and Arnaud Gotlieb. Software testing for machine learn-
ing. In The Thirty-Fourth AAAI Conference on Artificial Intelligence,
AAAI 2020, The Thirty-Second Innovative Applications of Artificial
Intelligence Conference, IAAI 2020, The Tenth AAAI Symposium on
Educational Advances in Artificial Intelligence, EAAI 2020, New York,
NY, USA, February 7-12, 2020, pages 13576–13582. AAAI Press, 2020.

[13] Aarian Marshall and Alex Davies. Uber’s self-driving car didn’t
know pedestrians could jaywalk. https://www.wired.com/story/
ubers-self-driving-car-didnt-know-pedestrians-could-jaywalk/, Nov 5,
2019.

[14] Jose Rivera, Alejandro Danylyszyn, Charles Weinstock, Lui Sha, and
Michael Gagliardi. An architectural description of the simplex archi-
tecture. Technical Report CMU/SEI-96-TR-006, Software Engineering
Institute, Carnegie Mellon University, Pittsburgh, PA, 1996.

[15] RTCA DO-178C. Software considerations in airborne systems and
equipment certification, 2011.



[16] RTCA DO-248C. Supporting Information for DO-178C and DO-278A,
2011.

[17] RTCA DO-331. Model-Based Development and Verification Supplement
to DO-178C and DO-278A, 2011.

[18] Jack Stewart. Tesla’s autopilot was involved in an-
other deadly car crash. https://www.wired.com/story/
tesla-autopilot-self-driving-crash-california/, Mar 30, 2018.


