Resolute Assurance Arguments for
Cyber Assured Systems Engineering

Isaac Amundson and Darren Cofer
{isaac.amundson,darren.cofer}@collins.com
Collins Aerospace
Minneapolis, Minnesota, USA

ABSTRACT

Resolute is a tool and language for embedding an assurance argu-
ment in a system architecture model and evaluating the validity of
the associated evidence. In this paper we report on a number of ex-
tensions to Resolute that support systems engineers in developing
safe and cyber-resilient systems. System requirements are imported
as assurance goals to be satisfied. Architectural transforms are ap-
plied to the system model to address these requirements, while
corresponding assurance strategies and evidence are automatically
added to document how the requirements have been satisfied. Sub-
sequent changes to the model that invalidate any of the assurance
claims can be detected and corrected. We also use Resolute to check
that the model satisfies rules for code generation and other mod-
eling guidelines. We conclude with an application of the Resolute
assurance process to the design of a mission planning system for
an unmanned air vehicle.

KEYWORDS

assurance case, cyber-security, formal methods

ACM Reference Format:

Isaac Amundson and Darren Cofer. 2021. Resolute Assurance Arguments
for Cyber Assured Systems Engineering. In Proceedings of DESTION 2021:
Design Automation for CPS and IoT (DESTION 2021). ACM, New York, NY,
USA, 6 pages. https://doi.org/10.1145/nnnnnnn.nnnnnnn

1 INTRODUCTION

In recent years, aerospace stakeholders have become aware that
avionics systems are subject to possible cyber-attack just like other
cyber-physical systems. In addition to being fault-tolerant, safety-
critical avionics systems must also be be cyber-resilient. Cyber-
resiliency means that the system is tolerant to cyberattacks just as
safety-critical systems are tolerant to random faults: they recover
and continue to execute their mission function, or safely shut down,
as requirements dictate.

Unfortunately, systems engineers are currently given few devel-
opment tools to help answer even basic questions about potential
vulnerabilities and mitigations, and instead rely on process-oriented
checklists and guidelines. Cyber vulnerabilities are often discovered

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

DESTION 2021, May 18, 2021, Nashville, TN

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8316-5...$15.00

https://doi.org/10.1145/nnnnnnn.nnnnnnn

during penetration testing late in the development process. Worse
yet, they may be discovered after the product has been fielded, ne-
cessitating extremely expensive and time-consuming remediation.
This is not a sustainable development model.

In the DARPA Cyber Assured Systems Engineering (CASE) pro-
gram, our team is developing design, analysis, and verification
tools that enable systems engineers to design-in cyber-resiliency
for complex cyber-physical systems. We have produced a proto-
type Model-Based Systems Engineering (MBSE) environment called
BriefCASE which is based on the Architecture Analysis and Design
Language (AADL) [14]. BriefCASE extends the Open Source AADL
Tool Environmnet (OSATE) to add new design, analysis, and code
generation capabilities targeted at building cyber-resilient systems.

BriefCASE provides access to two analysis tools (GearCASE [13]
and DCRYPPS [12]) that can examine AADL models to detect po-
tential cyber vulnerabilities and suggest requirements for mitiga-
tion. A library of architectural transforms guides systems engi-
neers through automated model transformations that modify the
architecture to address these requirements, possibly inserting new
high-assurance components into the system. Implementations for
these new high-assurance components are synthesized from for-
mal specifications using the Semantic Properties for Language and
Automata Theory (SPLAT) tool [16]. Formal verification that the
transformed system model satisfies its cyber requirements is accom-
plished via model checking using the Assume Guarantee Reasoning
Environment (AGREE) [18]. Cyber-resilient code implementing the
verified model is automatically generated using the High Assurance
Modeling and Rapid Engineering for Embedded Systems (HAMR)
toolkit [7]. If desired, this code can be targeted to the formally
verified seL4 secure microkernel [11].

A novel aspect of our approach is the use of an assurance ar-
gument embedded in the architecture model itself to capture and
document the design decisions made during this process, along
with associated rationale.

We developed the Resolute language and tool [5] as a way to
help developers create an assurance argument describing the steps
taken during the design process to make the system safe and secure.
Rather than being a separate document, a Resolute assurance case is
part of the architecture model and can refer to elements within the
model. Since it is not a static representation, it can ensure that the
assurance argument remains consistent with the evolving design.

Assurance cases have a large and well-developed literature. Pat-
terns for assurance case argumentation have been considered in [3,
8,9, 17]. An approach to apply and evolve assurance cases as part
of system design is found in [6], which is similar to the process we
have used in applying Resolute. Additional related tools and studies
are described in [5].

https://doi.org/10.1145/nnnnnnn.nnnnnnn
https://doi.org/10.1145/nnnnnnn.nnnnnnn

DESTION 2021, May 18, 2021, Nashville, TN

2 RESOLUTE

An important aspect of our work on CASE has been to structure
formalizations and proofs by following the AADL description of
the system. In other work, we did this through the use of formal
assume-guarantee contracts that correspond to the requirements
for each component [2]. We have found that in assuring the cyber-
security properties of aircraft designs we need to integrate different
kinds of evidence with varying levels of formality. This has been
our motivation to explore assurance case methods.

Resolute is an assurance case language and tool which is based
on AADL architectural models. In developing Resolute, we have
followed the same approach of embedding the proof in the archi-
tectural model, tightly coupling terms in the assurance case with
evidence derived directly from the system design artifacts. This
ensures that we maintain consistency between the system design
and its associated assurance case(s). Design changes that might
invalidate some aspect of an assurance case can be immediately
flagged by our tool for correction.

Users formulate claims and rules for satisfying those claims,
which Resolute uses to construct assurance cases. Both the claims
and rules are parameterized by variables which are instantiated
using elements from the models. This connects the assurance case
directly to the AADL model and means that changes to the AADL
model can result in changes to the assurance case. In Resolute, each
claim corresponds to a first-order predicate. Logically, these rules
correspond to global assumptions that have the form of an implica-
tion with the predicate of interest as the conclusion. This means
that a small reusable set of rules can result in a large assurance case
since each rule may be applied multiple times to different parts of
the architecture model.

Resolute allows users to incorporate computations in their assur-
ance arguments. Usually these computations are based on querying
the model structure. Analyses performed by external tools can also
be incorporated in Resolute as computations. This is useful for in-
corporating as evidence that results from existing analysis tools for
checking properties such as schedulability or resource allocation.

Resolute syntax has been extended to support construction of
assurance cases that comply with the Goal Structuring Notation
(GSN) v2 standard [15]. Claims can now be expressed as goals and
strategies, and they can contain attributes such as context, assump-
tions, and justification. Claims can be marked undeveloped, which
Resolute interprets as an unsupported claim, or with a solution,
which is an explicit assertion that the claim is supported.

Support for GSN enables Resolute results to be exported to the
AdvoCATE tool [4]. A new export option has been included, which
generates an argument file that can be imported directly into an
AdvoCATE project and merged with an existing assurance case.

The Resolute package also includes a new linter tool for AADL
models, called Resolint. Resolint provides a language for specifying
rules that correspond to modeling guidelines, as well as a checker
for evaluating whether a model complies with the rules. Results
of the Resolint analysis are displayed to the user, and can even be
incorporated as evidence in a Resolute assurance argument. Rule
violations indicate severity, and are linked to the model element
that is out of compliance with the rule.

Amundson and Cofer

3 BRIEFCASE OVERVIEW

Our BriefCASE toolchain provides systems engineers with a work-
flow and tool support for developing products with inherent cyber-
resiliency. BriefCASE is predicated on an MBSE process, in which
models are the primary vehicle for communication and understand-
ing among the parties tasked with designing the system. Further-
more, MBSE models are the primary design artifacts used for anal-
ysis, verification, testing, and code generation.

The BriefCASE workflow starts with the development of an
AADL model of the system architecture. BriefCASE is implemented
as a set of plugins that work with OSATE, the flagship tool for
AADL modeling. Once an architecture model has been created, it
can be analyzed in various ways (e.g., resource usage, information
flow, latency) to determine whether the initial design is acceptable.

BriefCASE integrates tools that analyze the architecture model
for cybersecurity vulnerabilities and generate a set of requirements
that, when addressed, will mitigate those vulnerabilities. The gen-
erated requirements are imported into the model and represented
as goals in a Resolute assurance case. As a requirement is addressed
in the design, the assurance case is updated with evidence, either
taken directly from the model or supporting development process
outputs, necessary to support the claim. In this manner, the assur-
ance case is co-developed alongside the system design, and can be
automatically evaluated throughout development.

BriefCASE provides systems engineers with a requirements man-
agement interface (Figure 1) for viewing the generated requirements
and importing them into the model so they can be addressed. The
interface enables engineers to select the requirements they wish to
import and assign them unique IDs, or omit them with rationale. A
document of the omitted requirements and rationale is maintained,
and may be a required development artifact for some certification
domains. Some requirements can also be formalized as assume-
guarantee contracts, enabling formal analysis in AGREE. Such a
requirement will be imported with an associated formal AGREE
contract.

Figure 1: Requirements management interface.

A BriefCASE project contains a repository for requirements.
Imported requirements are represented as Resolute goals to be
satisfied. For example, the well-formedness requirement selected

Resolute Assurance Arguments for
Cyber Assured Systems Engineering

in Figure 1 is imported as the Resolute goal shown in Figure 2.
Initially, the goal is marked undeveloped, and does not contain any
evidential statements for Resolute to evaluate in order to determine
whether the goal has been satisfied. Running Resolute at this time
will therefore produce a failed assurance case.

goal Req WellFormed OperatingRegion(comp context : component) <=
** "UxAS component shall only receive well-formed messages" **
context Generated On : "January 29, 2021";
context Req Component : "MC::MissionComputer.Impl.SW.UxAS";
undeveloped

Figure 2: Resolute well-formedness requirement.

To address the new requirement, the architecture will need to be
transformed in such a way as to harden the design against the vul-
nerability. BriefCASE provides a library of model transformations
for addressing common cyber vulnerabilities. The transformations
are automated by the tool, resulting in a hardened model that is
correct-by-construction. For example, ensuring a component only
receives well-formed messages can be accomplished by the inser-
tion of a high-assurance filter. The BriefCASE Filter transform
wizard (Figure 3) enables the configuration of filter component
properties, including the filter behavioral specification, which is
represented in the AGREE language.

Add Filter

Enter Filter details. You may optionally leave these fields empty and manually
edit the AADL filter component once it is added to the model.

Filter component name OperatingRegionMsg_Filter

Filter subcomponent instance name OR_Filter
Dispatch protocol None (_ Periodic (+) Sporadic
Period
Filter Port Names (e e e ot
Output port name Output
Create log port) None () Event () Data () Event Data
Requirement Req_WellFormed_OperatingRegion =
Filter Policy 2eWELL_FORMED_OPERATING_REGION(Input)| |

cancel “

Figure 3: Filter transform wizard.

BriefCASE inserts a new filter component into the model, sets the
component properties, and establishes the appropriate connections
to source and destination components. The filter specification is
inserted into an AGREE annex, enabling both formal analysis of
the model as well as providing the behavioral specification for a
provably correct synthesis of the component implementation via
the SPLAT plugin.

The transformation also updates the Resolute goal with new evi-
dential statements pointing to evidence that the model has indeed
been hardened against the vulnerability and the requirement has
been satisfied (as shown in Figure 4). For example, the add_filter
strategy is included in a library of built-in Resolute transform rules
and provides Resolute with the logical instructions for evaluating
if the top-level goal has been satisfied. The add_filter definition
(shown in Figure 4) includes the following sub-goals:

e filter_exists - the filter component exists in the model

DESTION 2021, May 18, 2021, Nashville, TN

e filter_not_bypassed - there is no alternate pathway in
the model that can bypass the filter

o filter_implemented_correctly - the filter has been im-
plemented correctly

goal Req_WellFormed OperatingRegion(comp_context : component, filter : component,
conn : connection, message type : aadl) <=
** "UxAS component shall only receive well-formed messages" **
context Generated On : "January 29, 2021%;
context Req_Component : "MC::MissionComputer.Impl.SW.UxAS";
add filter(comp context, filter, conn, message type)

- Strategy for proper insertion of a filter
strategy add filter(comp context : component, filter : component,
conn : connection, msg type : aadl) <=
** "Filter is properly inserted” **
filter_exists(filter, comp_context, conn) and
component not bypassed(filter, comp context, msg type) and
component implemented(filter)

Figure 4: Updated well-formedness claim.

The first two sub-goals are supported by evidence obtained by
examining the structure of the model, while the last is determined
by examining the output of the synthesis tool. This approach fol-
lows the model-based decomposition pattern based on [1], and is
representative of all BriefCASE transform assurance strategies. If at
a later time during development the model is inadvertently altered
in a way that renders the transformation ineffective, Resolute will
be unable to substantiate the evidential statements, and therefore
produce a failing assurance case.

The third subgoal is satisfied by SPLAT. SPLAT not only gener-
ates the implementation code for high-assurance components such
as filters, monitors, and gates, but it also produces a proof that this
code correctly implements its AGREE specification. Resolute uses
the existence of the SPLAT proof as evidence that the component
was implemented correctly.

After all imported requirements have been addressed, no new
requirements are generated from subsequent analyses, the model
passes formal verification, and compliance with modeling guide-
lines has been ascertained, then the system can be built and de-
ployed. HAMR is a code generation and system build framework
included in BriefCASE. HAMR supports development of new com-
ponents and wrapping of legacy components by generating code
that provides the interfacing infrastructure between components.
It translates the AADL system model to code that implements the
threading infrastructure and inter-component communication that
is consistent with the AADL computational model. It also generates
a correspondence proof showing that the generated code preserves
the information flow specified in the AADL model. Resolute can
check for the existence of this proof as evidence that the build has
been carried out correctly.

After the build has completed, Resolute can be run one last time
to generate the full assurance argumentation associated with the
BriefCASE workflow. The resulting assurance case sub-tree can
then be integrated into a full system assurance case for evaluation.

4 APPLICATION

In this section, we demonstrate the role of Resolute in the Brief-
CASE toolchain by designing a UAV surveillance application in
which a UAV receives commands from a ground station to conduct

DESTION 2021, May 18, 2021, Nashville, TN

surveillance along a geographical feature such as a river. The on-
board mission computer then generates a flight plan consisting of
a series of waypoints that the UAV must traverse to complete its
mission. The UAV is also given a set of keep-in and keep-out zones
that may constrain its flight path.

We have modeled the system architecture of the UAV in AADL.
It includes a mission computer for communicating with the ground
station and generating flight plans, and a flight control computer for
UAV navigation. The mission computer architecture model includes
hardware components such as a processor, memory, and communi-
cation devices, as well as software. The initial software architecture
model (shown in Figure 1) contains drivers for communication with
the ground station and flight control computer, a Waypoint Man-
ager component that provides flight plan coordinates to the flight
control computer, and the flight planner. The flight planner is the
open-source UxAS software developed by AFRL [10].

In BriefCASE, we analyze the model using one (or more) of the in-
tegrated cybersecurity analysis tools, which generates a list of new
requirements. To satisfy these requirements we will need to miti-
gate the vulnerabilities discovered by the analysis by modifying the
design. In total we import eight new cyber requirements, including
one sandboxing requirement, four well-formedness requirements,
two requirements for monitoring the behavior of the open-source
UxAS component, and an attestation requirement for ensuring the
ground station software has not been tampered with. As described
in Section 3, requirements are imported into the model as goals in a
Resolute assurance case. Because we can run Resolute at any time
during development, we can easily determine for a given snapshot
of the model which requirements are not yet supported by evidence.
For example, running Resolute on the snapshot immediately after
importing the new requirements will produce the results shown in
Figure 5.

& Assurance Case 53 s
» HlReq_Attestation(MissionComputer_Impl_Instance : MC:MissionComputer.Impl)

» HReq. 10 mputer_Impl_Instance : MC::MissionComputer.Impl, *Req_Wellformed_OperatingRegion”)

» EReq_WellFormed_LineSearchTask(MissionComputer_Impl_Instance : MC::MissionComputer.Impl, "Req_Wellformed_LineSearchTask")

» [Req.
» HReq. L/
» [Req_UxAS_Response(MissionComputer_Impl_Instance : MC::MissionComputer.impl)

omputer_Impl_Instance : MC::MissionComputer.Impl, “Req_Wellformed_AutomationRequest")
mputer_Impl_Instance : MC::MissionC “Req_Wellformed_)

» [Req_UxAS_Geofence(MissionComputer_Impl_Instance : MC:MissionComputer.Impl)
» [HlReq_Virtualization(MissionComputer_Impl_Instance : MC::MissionComputer.impl)

Figure 5: The initial Resolute evaluation fails.

Resolute produces a failing assurance case because it does not
have enough information to evaluate whether the assurance goals
representing the new requirements have been satisfied. BriefCASE
provides a library of model transformations that mitigate several
classes of cyber vulnerabilities. Not only does BriefCASE trans-
form the model by modifying the architecture in a manner that
addresses the vulnerability, but it also modifies the Resolute assur-
ance argument by adding new strategies describing the evidence
that is required to support the goal. This is possible because the
transform wizard links the mitigation to the Resolute requirement
that is driving it.

The sandboxing requirement was generated because UxAS is
untrusted code. We did not develop it ourselves and it is open source
software that could potentially contain malicious code. To mitigate
this vulnerability, we place it in a virtual machine so that the effects

Amundson and Cofer

of any such malicious code will be contained. The Virtualization
transform adds a virtual processor to the architecture and updates
processor bindings. The Resolute requirement is then updated to
check that the virtual machine is bound to the specified processor,
and that the target components are bound to the virtual processor
(and do not execute on any other processor). After applying the
Virtualization transform, the Resolute assurance argument for the
sandboxing requirement passes, as shown in Figure 6.

) Assurance Case 12 = n

~ + Req_Virtualization(MissionComputer_Impl_instance : MC::MissionComputer.impl, {this.SW.UxAS}, [}, MissionCc
~ ' [monitor_correctness] Uncontrolled UxAS component shall be monitored for output correctness
~ +/ {UxAS : Waterways_UxAS:Watenways.i} contained in VM VirtualMachine : MC::CASE_VirtualMachine.Impl
</ VirtualMachine : MC::CASE_VirtualMachine.Impl is bound to a processor
~ + Components are bound to virtual processor VirtualMachine : MC::CASE_VirtualMachine.Impl
+ Comp UxAS ys_U.

ys.i is bound to virtual processor VirtualMachine : MC

+ Subcomponents are not bound to other processors

Figure 6: Assurance argument after applying the Virtualiza-
tion transform.

Although we have now placed UxXAS in a virtual machine, it is
still communicating with other critical components in our system.
The intent of the well-formedness requirement is to prevent mal-
formed messages that could be sent from an infected UxAS from
reaching the Waypoint Manager and causing a buffer overrun or
code injection attack. By placing a filter on the connection joining
these two components, such an attack could be mitigated. The three
other well-formedness requirements that were generated apply to
the incoming UxAS connections.

The Filter transform (described in Section 3) is applied for each
requirement, inserting filter components on the incoming and out-
going UxAS connections. The filter behavior for each component is
specified in AGREE. Not only does this enable formal verification
within the modeling environment, but it also provides a means for
synthesizing the component implementation in a provably correct
manner using the SPLAT tool. Because SPLAT is integrated with
BriefCASE, the proof it emits when synthesizing component code
is used as evidence in the Resolute goal for the corresponding miti-
gation. When Resolute evaluates whether such a goal is supported
by evidence, it checks for the existence of the synthesis proof in
addition to verifying the architecture is correct. After performing
all four Filter transforms, the resulting assurance arguments are
shown in Figure 7 (some branches are truncated for clarity).

& Assurance Case 2 $ &

~ VReq_\ 0

| omputer_Impl_Instance : MC::MissionComputer.Impl, “Req_Wellformed_OperatingRegion®,
~ +/ [permit_well_formed_OR_data] UxAS component shall only receive well-formed messages
+/ AGREE properties passed
~ +/Filter OR _Filter : SW::OperatingRegion_Filter.Impl is properly added to UxAS ys_L i
/A CASE _Filter OR_Filter : SW::OperatingRegion_Filter.Impl is connected to component UxAS : Waterways_UxAS::Waterways.i by

+/ Component OR_Filter : SW::OperatingRegion_Filter.Impl cannot be bypassed
~ +/ Component property implemented

+/ OR _Filter : SW::0j Filter.Impl is for 0S
+/ Component proof checked
» /Req |_LineSearc] ‘omputer_Impl_Instance : MC::MissionComputer.Impl, "Req_Wellformed_LineSearchTask", M
» Req. ¥ omputer_Impl_Instance : MC::MissionC “Req_ ¥
» /Req_ ¥ omputer_Impl_Instance : MC::MissionC “Req_

Figure 7: Assurance arguments after applying the Filter
transforms.

In addition to monitoring the UxAS output for malformed mes-
sages, we must also monitor for suspicious behavior. This requires

Resolute Assurance Arguments for
Cyber Assured Systems Engineering

adding components for detecting that UxAS has crashed, as well
as monitoring the correctness of the flight plans it produces. The
Monitor transform is applied for this class of mitigation. We per-
form two transforms. The first adds a response monitor to send an
alert if UXAS does not emit a response within a set amount of time
from receiving a request. The second adds a geofence monitor to
ensure that generated flight plans are compliant with the speci-
fied keep-in and keep-out zones. Similar to the filters, the monitor
behavior is specified in AGREE, enabling formal verification and
provably correct synthesis. The associated Resolute requirement is
similarly updated to check the correctness of the architecture, that
the AGREE analysis passes, and for implementation correctness.
The monitor assurance arguments appear as shown in Figure 8.

@ Assurance Case 52 =g

~ +/ Req_UxAS_Response(MissionComputer_Impl_Instance : MC::MissionComputer.Impl, MissionComputer_Impl_Instance : MC:
~ + [monitor_response] Uncontrolled UxAS component shall be monitored for crashes
w «/ Monitor Resp_Monitor : SW::Response_Monitor.Impl is properly added to UxAS : Waterways_UxAS::Waterways.i
+/ Resp_Monitor : SW::Response_Monitor.Impl exists in the model
+/ Monitor Alert port is connected
+/ Monitor reset port cannot be triggered by source of observed signal
+ +/ Component property implemented
+/ Resp_Monitor : SW::Response_Monitor.Impl implementation is appropriate for 05
+/ Component proof checked
~ +/ Req_UxAS_Geofence(MissionComputer_Impl_Instance : MC::MissionComputer.Impl, MissionComputer_Impl_Instance : MC
~ + [monitor_correctness] Uncontrolled UXAS component shall be manitored for output correctness
~ «/ Monitor Geofence_Monitor : SW::Geofence_Monitor.Impl is properly added to UxAS : Waterways_UxAS::Waterways.i
+ Geofence_Monitor : SW::Geofence_Monitor.Impl exists in the model
+/ Monitor Alert port is connected
+/ Monitor reset port cannot be triggered by source of observed signal
+/ Component Geofence_Monitor : SW::Geofence_Monitor.Impl cannot be bypassed
~ « Component property implemented
+/ Geofence_Monitor : SW::Geofence_Monitor.Impl implementation is appropriate for 0S

+/ Component proof checked

Figure 8: Assurance arguments after applying the Monitor
transforms.

The requirements that have been addressed so far mitigate vul-
nerabilities related to malformed messages and malicious behavior
on board the UAV. But we also want to protect against a compro-
mised ground station that could potentially transmit well-formed,
but malicious commands. The final cyber-requirement is mitigated
by the Attestation transform, which adds two components to the
UAV software: an Attestation Manager for evaluating remote sys-
tems like the ground station, and an Attestation Gate for blocking
messages from sources that have not been white-listed by the At-
testation Manager. With the attestation requirement addressed, the
corresponding assurance argument is shown in Figure 9.

i Assurance Case = A

¥ «/ Req_Attestation(MissionComputer_Impl_Instance : MC::MissionComputer.impl, MissionComputer_Impl_Inst
 + [attestation] Only messages from trusted sources shall be accepted
« +/ Attestation Manager added for communications driver Radio : SW::RadioDriver_Attestation.Impl
+/ An attestation manager on Radio : SW::RadioDriver_Attestation.Impl exists
+/ Attestation Manager cannot be bypassed
~ « Component property implemented
v ger : SW::CASE
+/ Component proof checked

ger.Impl implementation is appropriate for OS

Figure 9: Assurance argument after applying the Attestation
transform.

After transforming the model to address its cyber requirements,
the software architecture now appears as shown in Figure 10. The

DESTION 2021, May 18, 2021, Nashville, TN

components in green were added to the model by way of an auto-
mated BriefCASE transform and are critical for mitigating cyber
attacks. We formally verify the model with AGREE to show that all
of the contracts are satisfied, and Resolute automatically evaluates
the results in the assurance case. Because it is imperative that the
high-assurance component implementations are also correct, we
run the SPLAT tool to produce provably-correct code. The synthe-
sized code is output to a directory in the build file system with the
location specified for each component in the model. The correspond-
ing correctness proof is used in our assurance case as additional
evidence that the vulnerability has been properly mitigated.

Most certification standards, as well as industry best practices,
recommend that modeling activities comply with a set of modeling
guidelines. Running Resolint on our UAV model confirms that we
are in full compliance with our modeling guidelines and HAMR code
generation preconditions. The Resolint results are yet another piece
of assurance evidence automatically inserted into the assurance
case and evaluated by Resolute.

Once we have determined that the model is correct and satisfies
its cyber requirements, we run HAMR to generate the component
stubs and infrastructure code necessary to enable component com-
munication and execution according to a specified schedule.

Running Resolute one last time and exporting to the AdvoCATE
tool produces the assurance argument shown in Figure 11. Blue
elements correspond to model correctness and orange elements
correspond to implementation correctness. Due to space limitations,
a comprehensive argument cannot be displayed. All the goals are
supported by evidence generated by the BriefCASE tools, which
provides us with confidence that the deployed system will be re-
silient to cyber attacks that could otherwise lead to mission failure.

Videos demonstrating the use of the BriefCASE tools to build
this UAV example are available at loonwerks.com/projects/case.

5 CONCLUSION

BriefCASE can help systems engineers build complex cyberphysical
systems that are cyber-resilient by design. Cyber requirements are
captured as assurance goals to be met by the system design. The
architectural transforms and code synthesis plugins automatically
create a corresponding assurance argument in the background,
gathering the associated evidence from the model structure and
different analysis and proof tools.

Next steps include further development and capture of evidence
related to the build process. This includes connecting the corre-
spondence proof generated by HAMR to the separation guarantees
provided by the seL4 secure kernel, demonstrating that the informa-
tion flow properties described in the AADL model are preserved in
the executable code. In the final phase of the CASE program we will
also be applying the BriefCASE tools to new connectivity features
being added to the avionics system of a military helicopter.

ACKNOWLEDGMENTS

This work was funded by DARPA contract HR00111890001. The
views, opinions and/or findings expressed are those of the author
and should not be interpreted as representing the official views or
policies of the Department of Defense or the U.S. Government.

loonwerks.com/projects/case

DESTION 2021, May 18, 2021, Nashville, TN

Amundson and Cofer

Radio* AttestationManager*

AtestationResponse. AtestationResponse

IAttestationRequest

AttestationRequest

FlyZones*
Keer

§mmmy Imms

1 AResp_Filter* ooy’

send datd uart send

recy dath uart reév
hirtehiclestate P

Filter: Well-formed Operating Region
(Figure 7)

Virtualization
(Figure 6)

Attestation
(Figure 9)

Y
Monitor: UXAS Response (Figure 8)

Figure 11: Cyber-resiliency assurance argument for the hardened system.

REFERENCES

[1] Anaheed Ayoub, BaekGyu Kim, Insup Lee, and Oleg Sokolsky. 2012. A Safety
Case Pattern for Model-Based Development Approach. 141-146.

[2] Darren D. Cofer, Andrew Gacek, John Backes, Michael W. Whalen, Lee Pike,
Adam Foltzer, Michal Podhradsky, Gerwin Klein, Thor Kuz, June Andronick,
Gernot Heiser, and Douglas Stuart. 2018. A Formal Approach to Constructing
Secure Air Vehicle Software. Computer 51, 11 (2018), 14-23.

[3] E.Denney and G. Pai. 2013. A Formal Basis for Safety Case Patterns. In Proceedings
of the 2013 International Conference on Computer Safety, Reliability and Security
(SAFECOMP) (Toulouse, France).

[4] Ewen Denney and Ganesh Pai. 2018. Tool Support for Assurance Case Develop-
ment. Automated Software Engineering 25 (09 2018).

[5] Andrew Gacek, John Backes, Darren D. Cofer, Konrad Slind, and Mike Whalen.
2014. Resolute: an assurance case language for architecture models. In Proceedings
of the 2014 ACM SIGAda annual conference on High integrity language technology,
HILT 2014, Portland, Oregon, USA, October 18-21, 2014, Michael Feldman and
S. Tucker Taft (Eds.). ACM, 19-28.

[6] P.Graydon, J. Knight, and E. Strunk. 2007. Assurance Based Development of
Critical Systems. In 2007 International Symposium on Dependable Systems and
Networks (DSN) (Edinburgh, Scotland).

[7] HAMR 2021. High Assurance Modeling and Rapid engineering for embedded
systems. Retrieved Feb 26, 2021 from http://sireum.hamr.org

[8] R.Hawkins, K. Clegg, R. Alexander, and T. Kelly. 2011. Using a Software Safety
Argument Pattern Catalogue: Two Case Studies. In Proceedings of the 2011 Inter-
national Conference on Computer Safety, Reliability and Security (SAFECOMP).

[9] T.Kelly and J. McDermid. 1997. Safety case construction and reuse using patterns.
In Proceedings of the 1997 International Conference on Computer Safety, Reliability,
and Security (SAFECOMP).

[10] Derek B. Kingston, Steven Rasmussen, and Laura R. Humphrey. 2016. Auto-
mated UAV tasks for search and surveillance. In 2016 IEEE Conference on Control
Applications, CCA 2016, Buenos Aires, Argentina, September 19-22, 2016. IEEE, 1-8.

[11] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. 2009. seL4: formal
verification of an OS kernel. In Proceedings of the 22nd ACM Symposium on
Operating Systems Principles 2009, SOSP 2009, Big Sky, Montana, USA, October 11-
14, 2009, Jeanna Neefe Matthews and Thomas E. Anderson (Eds.). ACM, 207-220.

[12] Robert Laddaga, Paul Robertson, Howard E. Shrobe, Dan Cerys, Prakash Mangh-
wani, and Patrik Meijer. 2019. Deriving Cyber-security Requirements for Cy-
ber Physical Systems. CoRR abs/1901.01867 (2019). arXiv:1901.01867 http:
//arxiv.org/abs/1901.01867

[13] Mitchell D. Patten, T. and C. Call. 2020. Cyber Attack Grammars for Risk-Cost
Analysis. In Proceedings of the 15th International Conference on Cyber Warfare
and Security. Norfolk, VA.

[14] SAE. 2009. Architecture Analysis and Design Language (AADL). Technical Report
AS-5506. SAE International. https://www.sae.org/standards/content/as5506a/

[15] SCSC-141B. 2011. Goal Structuring Notation Community Standard (Version 2).
The Assurance Case Working Group.

[16] Konrad Slind. 2020. Take a Seat: Security-Enhancing Architecture Transforms.
In Proceedings of the 20th High Confidence Software and Systems Conference.
https://cps-vo.org/hcss2020/slind

[17] L. Sun, O. Lisagor, and T. Kelly. 2011. Justifying the Validity of Safety Assessment
Models with Safety Case Patterns. In Proceedings of the 6th IET System Safety
Conference (Birmingham, UK).

[18] Michael W. Whalen, Andrew Gacek, Darren D. Cofer, Anitha Murugesan, Mats
Per Erik Heimdahl, and Sanjai Rayadurgam. 2013. Your "What" Is My "How":
Iteration and Hierarchy in System Design. IEEE Softw. 30, 2 (2013), 54-60.

http://sireum.hamr.org
https://arxiv.org/abs/1901.01867
http://arxiv.org/abs/1901.01867
http://arxiv.org/abs/1901.01867
https://www.sae.org/standards/content/as5506a/
https://cps-vo.org/hcss2020/slind

	Abstract
	1 Introduction
	2 Resolute
	3 BriefCASE Overview
	4 Application
	5 Conclusion
	Acknowledgments
	References

