
MASTECS Multicore Timing Analysis
on an Avionics Vehicle Management Computer

Raúl de la Cruz?, Philip Harris?, Samuel R. Thompson†, Christos Evripidou†,
Tim Loveless§, Juan M. Reina‡, Mikel Fernandez‡, Enrico Mezzetti‡, Francisco J. Cazorla‡

?Collins Aerospace Applied Research & Technology, Ireland
†Rapita Systems L.t.d, UK

§Lynx Software Technologies, UK
‡Barcelona Supercomputing Center, Spain

Abstract—Driven by the increasing compute performance
required by modern autonomous systems, high-integrity ap-
plications are moving to multi-core processors as their main
computing platform. Using multi-core processors in avionics is
particularly challenging since the timing behavior of the software
is not only affected by its inputs but also by software running
simultaneously on other cores. To address this challenge the
MASTECS project has developed a methodology for multicore
timing analysis together with a supporting toolset. In this work
we show the results of evaluating this methodology and tools on
a representative avionics use case.

Index Terms—Multicore Timing Analysis, Airborne Software,
Robust Partitioning, CAST-32A

I. INTRODUCTION

Autonomy features such as Advanced Air Mobility, Single
Pilot Operation, and others, are driving commercial avionics
systems towards multicore processors (MCPs) in pursuit of
higher compute performance. MCPs are increasingly the cen-
tral element of computing platforms for commercial avionics
systems [15], [20]. As described in the CAST-32A position
paper [6]1 and DOT/FAA/TC-16/51 report [11], significant
MCP-related challenges such as software timing analysis have
to be addressed before MCPs can be fully embraced. The key
challenge with MCPs is the timing behavior of a piece of
software is not only affected by its inputs but also by the
software running simultaneously on other cores.

The development process of modern avionics systems is
a very costly and time-consuming activity, taking as long as
5 years from requirements to the final certification [9]. To
meet safety certification, the deterministic timing behavior of
newly-developed avionics systems must be extensively proven
to airworthiness authorities (e.g. FAA, EASA). Software certi-
fication is a time-consuming and largely manual process whose
cost dwarfs the typical embedded development process. The
long process to generate evidence exacerbates the burden of
certifying MCP products for aerospace suppliers.

The MASTECS project [1] has developed a structured
analytical approach (methodology and tools) to produce ev-
idence about multicore timing behavior. The MASTECS test
methodology is specifically designed to capture the impact of
multicore contention on application behavior. It hinges on the

1In 2022, CAST-32A will be supplemented/superseded by AMC 20-193, a
joint effort by EASA and the FAA. See Notice of Proposed Amendment [5].

use of micro-benchmarks (highly-targeted qualifiable interfer-
ence generators) to simulate configurable resource contention,
while using built-in performance monitoring functionality on
the processor to capture application response. Tests are carried
out on-target using the RapiTime timing analysis tool, with
automation of test execution and analysis from the RapiTest
tool. The test framework incorporates the capability to trace
tests and results back up to specific verification goals.

In this work we present the application of the MASTECS
Multicore Timing Analysis (MTA) methodology and some
specific tools matured during the project to an avionics use
case provided by MASTECS partner Collins Aerospace. The
use case, which runs on an NXP T2080 platform with the
LynxSecure Separation Kernel Hypervisor, is an adaptable-
baseline DAL-A (flight-critical) Vehicle Management Com-
puter (VMC) able to host third party and legacy applications.
Specifically, we show the results of making an iteration of
the MASTECS seven-step testing process based on a V-
shaped verification model. This includes multicore Critical
Configuration Settings (CCS), Interference Channels (ICH),
and Hardware Event Monitor (HEM) analysis; identification
of timing requirements; test case design; implementation of
test procedures; evidence gathering (testing); results analysis;
and results validation and generation of documentation.

The rest of this work is structured as follows: Section II
introduces the commercial state of the art in MTA and intro-
duces some relevant academic works. Section III develops the
MASTECS approach to address MTA challenges. Section IV
introduces the main elements of the MASTECS tool chain
used in each step of the proposed methodology. Section V de-
scribes the roles of each partner during the project. Section VI
introduces the use case and its timing requirements, shows how
the toolchain has been applied to address those challenges, and
show the results obtained. Section VII performs a retrospective
TRL analysis on the MTA tooling and its potential application
on industrial cases. Section VIII presents the main conclusions
of this work.

II. POSITIONING

MCPs, along with other accelerators integrated on the same
System on Chip, can in theory provide increased compute
performance, power efficiency, and space efficiency, as re-
quired in future avionics systems. However, tasks executing on
different cores can slow each other down due to competition



for shared resources like caches, interconnection transactions
and bandwidth, and hardware accelerator utilization. This
situation is even worse when deriving worst-case execution
time estimates as allowance must be made to account for worst
case scenarios which are unlikely but feasible.

One of the challenges for MTA lies in quantification,
demonstration, and documentation of the impact of multicore
contention. This entails the definition of an analysis and testing
approach that produces evidence of the timely execution of
the software on the multicore platform. However, mitigation
mechanisms can have a large overhead, so there is a delicate
balance to be struck between demonstration of high determin-
ism and detrimental loss of performance.

Recent works focus on providing a certification framework
that helps applicants to prepare their CAST-32A certification
activities [4]. The proposed framework uses graphical notation
diagrams to organize the argumentation. It also proposes
developing evidence via automated analysis.

Typical successful approaches to timing analysis of single-
core systems are based on either static analysis or test-driven
on-target measurement. However, scaling these to complex
MCPs has proven challenging. The complexity of current and
upcoming MCPs has been acknowledged to present a com-
plexity wall for static timing analysis solutions [19]. On the
software side, increasing complexity, for example to promote
autonomous features [18], challenges structural and syntactical
analyses. On the hardware side, hardware complexity and
opaque IP conspire to render derivation of accurate timing
models intractable. Measurement-based tools also present spe-
cific challenges for multi-core timing analysis [2]. Those are
related to developing a methodology, producing the required
evidence and traceability, and generation of stress scenarios to
derive trustworthy timing bounds. In this line several works
focus on improving platform observability. That is, they pro-
pose measurement environments with low-intrusiveness that
allow collecting detailed information about event monitors
with support for visualization [10], [12]. This requires tight
interaction with the RTOS or the debug technologies available
in the underlying hardware [12].

To the best of our knowledge, no available tool in the mar-
ket provides these capabilities, namely, analyzing the timing
behavior of applications running in a multicore and capturing
the needs of safety standards and certification requirements.

III. MASTECS MTA METHODOLOGY

MASTECS’ goal is to deliver an industrial MTA solution for
safety-critical embedded systems. In this Section we introduce
the MASTECS methodology for MTA and in Section IV how
it is implemented via the MASTECS toolchain. Throughout
this paper we use several terms that we introduce in Table I.

A. Platform Analyses

Building a solid understanding of the underlying hardware
platform is instrumental as the first step in any MTA project.
It helps gain insight on the existing ICHs and potential

TABLE I: Terms, acronyms, and their definition.

Term Definition
AMP Asymmetric Multi-Processing
CCS Crtical Configuration Setting
COTS Common Off The Shelf
CSP Certification Support Package
DMA Direct Memory Access
GPU Graphic Processing Unit
HEM Hardware Event Monitor
ICH Interference Channel
IFC Intended Final Configuration
MCP Multicore Processor
MPSoC Multi-Processor System on Chip
MTA Multicore Timing Analysis
SBC Single Board Computer
SoC System on Chip
QoS Quality of Service
RVD RVS Database
RVS Rapita Verification Suite
TCM Task Contention Model
TRM Technical Reference Manual
VMC Vehicle Management Computer
VM Virtual Machine

mitigation actions that can be implemented to control the
impact applications can suffer due to contention on those ICH.

Platform analysis mainly builds on the available Technical
Reference Manuals (TRMs) for the board, the System on Chip
(SoC), and any other I/O controller that can be used by the
target application. Besides the TRMs, some hardware vendors
provide Certification Support Packages (CSPs) that provide
specific information useful from critical domains from more
detailed descriptions of hardware blocks to hardware fault
related information. It is noted that CSPs might not be free of
charge, indeed they can be quite expensive, and require signing
specific NDAs. Also some hardware vendors also provide
consultancy support to solve specific questions that may arise
during the platform analysis as long as it does not reveal any
protected information on the hardware behavior.

There are three main elements to be identified in the
analysis: CCS, ICH and HEMs.

CCS analysis. It aims to determine the set of platform
control registers that hold configuration data such that an
unintended modification can result in the hosted software
not to comply with its functional, performance and timing
requirements. The goal is to use mechanisms to protect them
from unintended modifications or propose appropriate means
of mitigation if CCS are inadvertently altered.

HEM analysis. It captures the observability of the plat-
form’s ICH. This step aims to determine the particular HEMs
that help understand how applications exercise different ICH.
These allow the measurement of the load an application or
micro-benchmark puts on the ICH, to show whether an ICH
is mitigated by means of specific measures that may be in
place. It is worth mentioning that HEMs are used as a main
building block to provide evidence that micro-benchmarks
work as expected, i.e. to validate micro-benchmarks. However,
HEMs should not be automatically trusted to work according
to their described behavior in the corresponding TRM. Some
work [3] already reports mismatches between the definition
of some monitors in the corresponding TRMs and the values



observed for specific experiments in the NVIDIA Jetson and
Xavier MPSoCs, and the A53 in the Xilinx Zynq UltraScale+
MPSoC. Also errata documents [16] capture scenarios for
the NXP iMX6 architecture in which certain performance
monitors may not count events with precision. For the ARM
A53 implementation in the Xilinx UltraScale+, some issues
have also been reported with the instruction retired, store
retired, and unaligned load/store retired event counters (among
others) [21].

ICH analysis. MPSoC platforms in embedded critical do-
mains already incorporate complex, high-performance, and
Commercial Off-The-Shelf (COTS) hardware components
including decentralized and distributed interconnects, deep
shared cache hierarchies, DMAs, GPUs and other specialized,
vendor-specific accelerators. Shared hardware resources are
the root cause of multicore interference and so are the focus of
timing analysis. ICH analysis builds on available technical in-
formation to first identify the main hardware shared resources
in the platform (e.g. caches, interconnects, memories) and
develop a description of the potential ICHs that exist in those
shared resources.

The challenge lies in the fact that critical information for
timing characterization is either not fully disclosed (to protect
IP) or scattered across several documents. Furthermore, such
data as is available can be relatively unclear and sometimes
subject to errata. As a result, the list of potential ICHs
identified have to be validated and characterized empirically.

Platform Analysis, i.e. CCS, HEM, and ICH analysis, drives
the whole experimentation performed when following steps
of the MTA process including the assessment of the impact
CCS change on the application, the proposal of an ICH
quantification plan, and the proposal of a HEM validation plan.

B. IFC Seclection

A smart selection of values for the identified CCS can
both mitigate many ICHs while optimizing the performance of
applications. As the hardware platforms become increasingly
complex integrating more components, the number of CCS
increases in every MPSoC generation. Also the variety of hard-
ware features that can be controlled is wide. As representative
examples, in the NXP T2080 [7], [8] the user can control the
number of ways each core is allowed to use in the shared
L2 cache, while the Xilinx Zynq UltraScale+ CCS allow
control of quality of service (QoS) features that prioritize and
route requests [17]. In the former case, deploying cache way
partitioning prevents some of the ICHs in the L2 cache. In the
latter request prioritization and routing prevents conflicts on
the paths between different sources (e.g. computing elements
application processing unit and the real-time processing unit)
to a target (e.g. memory).

While intuitively cache partitioning, for instance, helps
mitigate contention, it also can cause an application running in
a core and confined to use a subset of the L2 cache to increase
its number of L2 misses. As a result, the particular number
of ways to assign to each core – which is configured via
control registers (CCS) – depends on the particular application

under consideration. Fixing CCS involves an iterative process
in which several values are empirically evaluated until a
good balance between isolation and performance is found. In
MASTECS, we built on micro-benchmarks and the TCM to
automate this process as covered in Section IV-C.

C. V Model
MASTECS methodology follows the standard V-model for

software development life cycle with a well-defined set of
analysis and test design activities, on the left side of the V,
matched with corresponding verification and validation steps,
on the other side. The fundamental steps in MASTECS MTA
process model are summarized in Figure 1.

Fig. 1: Steps proposed by MASTECS for MTA in the V-model
software development process.

À Firstly, the user timing requirements are identified, which
allows the remainder of the MTA process to be scoped
appropriately. These can range from validating that a given
cache partitioning mechanism prevent data evictions between
applications to show that a micro-benchmark puts the desired
level of load on a given ICH.

Á The second step entails identifying ICHs through which
interference between cores can take place. Also at this stage,
the HEMs necessary for the analysis are identified, as are the
CCS present in the platform. Note that Section III-A builds the
knowledge on the potential ICHs in the platform, while this
step specifically focuses on those ICH related to the timing
requirement being addressed. It also leverages HEM analysis
to restrict the analysis to the HEMs that capture the load on
the ICHs identified as relevant.

Â The third step in the MASTECS methodology is to
develop test cases to verify hypotheses supporting the user
requirements, which includes defining the micro-benchmarks
that will be used to exercise the ICH. Alongside ICHs, and
HEMs, micro-benchmarks are the main elements in the test
case argument.

The Ã fourth and Ä fifth steps focus on the implemen-
tation of the test procedures and their automated execute
on the platform to gather test evidence. MASTECS exploits
the Rapita Verification Suite (RVS) framework, from project
partner Rapita Systems Ltd (RPT), to automate the execution
of large batches of tests and the collection of raw information
from the execution of the program under analysis on the real
platform and configuration.



Fig. 2: MASTECS Toolchain.

In step Å, raw numbers are analyzed by technical expert
to assess whether they prove (or otherwise disprove) the
verification requirements. While the analysis step is only
partially automated, it greatly benefits from RVS framework
capability of providing different views and statistics of the
gathered data.

The last step Æ involves a review of requirements, genera-
tion of certification artifacts to support the safety argument of
the system. A characteristic feature of MASTECS MTA is that
the whole analysis process is oriented towards fulfilling qual-
ification and certification requirements as defined by domain-
specific standards and regulations. Raw numbers and analysis
results are presented as fundamental evidence to support a
domain-specific certification arguments.

A key theme in the MASTECS MTA approach is the
combination of the efforts of software timing analysis experts
and hardware experts. This allows provision of the required
insights into the behavior of modern complex MCPs running
complex software. Hardware experts identify the ICH in the
different hardware shared resources and any configuration
options that may affect them – CCS according to CAST-
32A. When it is determined than an ICH can be exercised
by an application under test, hardware experts propose suit-
able HEMs to track contention in those ICH and a micro-
benchmark design to put load on ICHs.

IV. MASTECS MTA TOOLCHAIN

The MTA toolchain supports the MTA methodology. It
builds on the combination and integration of the RVS and
Barcelona Supercomputing Center (BSC) Multicore Micro-
Benchmark technology (MµBT) and multicore hardware
knowledge. As shown in in Figure 2, Rapita’s RapiTest lets
the user to define the tests to carry out that usually involve
the software under test (i.e. the application) and a micro-
benchmark 2. Rapita’s RapiTime takes care of instrumenting
the application according to user specification that captures

2The Surrogate Applications (SurApps) are a type of micro-benchmarks
that aim to copy the load that a reference application puts on the ICHs. In
this work we do not assess SurApps.

the points of instrumentation and the specific HEMs to record
at each point. The data collected from the execution is loaded
in to an RVS Database (RVD). The RVS Exporter queries
the RVD to provide information according to user’s desired
views. Information from the RVD is also provided as feedback
on demand to BSC tools like the TCM and the Surrogate
(Application) Generator that work iteratively.

A. Hardware Analysis

The hardware analysis process presented in Section III-A
cannot be automated, that is, it is not possible to process TRMs
to automatically extract CCS, HEM and ICH information.
Hardware analysis is to be performed manually by hardware
experts who should be providing insightful information about
the hardware behavior.

Assessing the accuracy of the analysis is also difficult.
Not only does it depend on the information made available
to the hardware experts via the TRMs, CSPs, and consul-
tancy support from the hardware provider, but also different
hardware experts can produce slightly different conclusions
in terms of ICHs. This risk can be mitigated by perform-
ing the analysis by different set of hardware experts which
then combine their analyses into a single hardware analysis
document encompassing CCS, ICH, and HEM analysis. It
is also the case that robust guidelines on how to perform
the analysis and reference analysis documents derived from
previously analyzed processors can significantly help.

It is worth mentioning that, excepting the CSPs, none of
the information used for ICH, HEM, and CCS analysis is
intended for the purpose for which it is used in MTA. For
instance, no section in the TRM captures ICH specifically.
Instead, TRMs provide descriptions of how different hardware
blocks interact. This description is provided to the level needed
by software engineers to optimize the average performance
of its applications or provide some QoS, as such, the TRM
description is insufficient to provide all the details needed for
ICH analysis.

This can be mitigated by performing a solid set of ex-
periments to complement the analyses. HEMs are intended



for general performance analysis and debugging purposes and
usually lack descriptive information on exactly what events
they track [3]. Previous experience and experimentation is
needed to consolidate a set of trusted HEMs to use in the
rest of the MTA process.

B. Multicore Micro-Benchmark Technology

MµBT is a suite of software tools that cover the low-level
(hardware) aspects of MTA. In this section we cover micro-
benchmarks, which are some of the main building blocks for
MTA. Micro-benchmarks are single-behavior pieces of code
that stress a specific ICH (shared resource), see Figure 3. By
running the micro-benchmark against an application, one can
assess the sensitivity and aggressiveness of the application to
contention in a given ICH. Micro-benchmarks are specifically
tailored to the hardware/software target configuration (IFC),
and are a key tool to determine the bounds on the impact
of ICHs and for assessing the effectiveness of interference
mitigation techniques.

Fig. 3: Micro-benchmarks.

HEMs are used to assess the load micro-benchmarks put
on ICHs and in general to validate the correct behavior of
the micro-benchmark. Besides HEM-based validation a test
harness is performed for the functional validation of each
micro-benchmark under different scenarios.

PMUlib is a low-level library for configuring and reading
of performance monitor counters serving as an access point
to the available HEMs. It also supports an interface with trac-
ing/debug units where present in processors (e.g. MultiCore
Debug Solution in the Tricore AURIX TC39xx family) or
external (Lauterbach). Reading HEMs can be performed in-
band, i.e. from the software system under evaluation or via out-
of-band debugger facilities [12] to prevent any probe effect.

C. Task Contention Model

The profiling information collected over the application
in isolation can be conveniently exploited to provide early
bounds on multicore timing interference incurred by the same
application when deployed in a specific multicore scenario
and under a given process schedule. The TCM exploits in-
formation on both the target HW and task model run-time to
build a conservative analytical model for computing multicore
contention. The model is not meant to provide exact estimates
of multicore contention but early figures that can steer design
and deployment decisions. The model, which is parametric
on tasks’ profile and schedule, allows fast exploration of any
possible system configuration in view of reducing interference
and optimizing the system makespan. The TCM aims at
identifying a subset of candidate system configurations on
which to focus the verification and validation efforts.

Fig. 4: Task Contention Model.

More in detail, the TCM builds on a timing estimate in
isolation Cisol

i of a given task τi to derive a estimate of τi’s
execution time (Cmcp

i ) when deployed in a specific multicore
workload derived as Cmcp

i = Cisol
i + ∆i. The latter addend,

∆i, is the composition of two elements, see Figure 4, (i)
the longest contention different request types can suffer when
accessing a shared resource ri, Lmaxi,which is derived via
execution of micro-benchmarks; (ii) the maximum number of
requests, ni, performed by τi and its contenders running in
the other cores that are derived using PMULib (note that
Ni is the maximum number of access of task τi to each
resource, i.e. Ni = {ni,0, ni,1, ..., ni,k}, where k is the number
of shared resources. For instance, for a two task workload
and one shared resource, the number of requests from τi that
collide with co-runner τj in the access to the resource r0
is defined as min(ni,0, nj,0). Hence, we can derive ∆i as
min(ni,0, nj,0)× Lmax0. The interested readers are referred
to [13] for more information details on the fundamentals of
the TCM.

D. RapiTest

RapiTest is a test-harness generator, capable of generating
and driving both unit tests and system tests on-host and on-
target.

For the MASTECS case studies, RapiTest was used to
generate test harnesses and perform the necessary code in-
jections to execute micro-benchmarks and collect timing data
and HEMs as defined in the input interference tests.

RapiTest supports a range of native test input formats, in
addition to automatic converters for a range of widely-used



test formats. For the work documented here, RapiTest was
configured to use two test formats designed explicitly for
multicore testing. These formats allow simple description of
locations at which micro-benchmarks should be injected to
generate contention, the functions and call-trees that should
be instrumented, and the data that should be collected at these
locations.

E. RapiTime

RapiTime is an on-target timing measurement tool, which
integrates static analysis of source code with on-target instru-
mentation for both timing and resource usage into a single
hybrid timing analysis tool. Using RapiTime, it is possible
to configure the automatic injection of instrumentation based
on one or more pre-selected instrumentation profiles into
certain functions, syntactic structures, or even whole call-trees.
The instrumentation can be tightly controlled to minimise
overhead, for example by only instrumenting certain locations,
or by minimising the number of instrumentation points that
make higher-overhead resource-usage measurements.

Many targets (including the T2080 used in this study) have
a hardware limitation on the number of HEMs that can be
collected at a time. To support this, RapiTime incorporates
the concept of metric groups. A metric group is a selection
of HEMs that can be collected simultaneously. If more than
the maximum supported number of metrics is required, then
RapiTime can split these resources into metric groups, repeat
tests per metric group, and aggregate the data into a single
report database.

RapiTime results are stored into an RVD database, which
can be graphically interrogated using the RVS report viewer,
or programmatically using the Python API. Custom text-based
reports can be generated by the accompanying rvsexporter tool
using a simple combination of Markdown and Python.

F. RVS Reporting Tools

All the RVS tools generate report files as RVD databases.
To allow these databases to be interrogated, a few reporting
tools are provided.

1) RVS Report Viewer: RVS Report Viewer features an
interactive user interface that allows the user to explore the
test results stored in an RVD database. For RapiTime reports,
the report viewer gives access to (among other things):
• Execution time: Statistics for the maximum, average,

minimum, and high watermark execution time for each
instrumented function.

• Contribution time: The contribution to the overall exe-
cution time of the nominated roots made by each of the
instrumented functions.

• Invocation Timeline: Per-invocation execution time data
for each instrumented function.

• Execution Time Profile: Histograms showing the distri-
bution of observed execution times for each instrumented
function.

• Metrics: A range of visualizations for metrics collected
from any available HEMs.

• Coverage: While RapiTime doesn’t give the depth of
information that RapiCover does, RapiTime instrumen-
tation allows determination of which instrumented func-
tions were executed and which were not.

• Report Comparison: Two reports containing measure-
ments of the same thing can be compared. For example,
a RapiTime report containing data from a test run when
nothing was executing on the other cores of a system
could be compared with another report when the same
software was executed, but interference generators were
running on the other cores.

From the RVS Report Viewer, it is possible to generate
generic exports using the built-in default exporters. It’s also
possible to copy data tables directly into other software (e.g.
a spreadsheet) for further analysis.

2) RVS Exporter: RVS Exporter is a means to generate
custom report exports. RVS exporter takes an input template as
a markdown file. This markdown report can contain embedded
Python code that is evaluated when the template is processed
by RVS Exporter. This embedded Python code has access to
all the data in the results database, and the API also provides
useful utility functionality to make accessing, processing,
tabulating, visualising, and reporting on the data as simple
as possible.

If some tests are repeated, it is a simple matter to run the
RVS Exporter tool again to re-generate the report using the
latest data. The modular structure of the reports also facilitates
reuse of report fragments or processing algorithms between
reports without unnecessary duplication.

V. MASTECS PARTNERS

The MASTECS consortium comprises two technology
providers (BSC and RPT) and two end users (Collins
Aerospace and Marelli Europe) in avionics and automotive
who assessed the readiness the MASTECS MTA technology
by evaluating it on their corresponding use cases. While it is
not a partner of MASTECS, Lynx Software Technologies is
also listed below as they contributed to the study presented in
this work.

Barcelona Supercomputing Center (BSC) (Coordinator)
is a leading research center in high-performance counting and
embedded systems. BSC led the hardware analyses and ma-
tured the micro-benchmark technology, including the PMUlib
and the TCM, to reach a high level of industrial readiness. In
order to ensure a clear exploitation path of its technologies
BSC created a spin-off company, Maspatechnologies S.L.,
during early stages of the project.

Rapita Systems Ltd. is a leading provider of software veri-
fication tools and services globally to the embedded aerospace
and automotive electronics industries. Rapita has lead the
productization of the technologies by developing tooling,
processes, DO-178C documentation, tests and commercial
infrastructure to bring a whole solution to an exploitable
position within the market.

Collins Aerospace Applied Research & Technology
(Collins-ART) is the innovation organization of Collins



Aerospace, a Raytheon Technologies company, leader in pro-
viding advanced solutions for the global aerospace and defense
industry. Collins-ART has actively participated in MASTECS
as end-user for the aerospace industry. Its main role was on
setting avionics requirements; providing a representative aero
case study; and demonstrating the effectiveness and soundness
of the MTA toolchain during the evaluation.

Marelli Europe SpA. Marelli is one of the world’s leading
global independent suppliers to the automotive sector. With a
strong and established track record in innovation and manufac-
turing excellence, Marelli’s mission is to transform the future
of mobility through working with customers and partners to
create a safer, greener and better-connected world. Marelli
has actively participated in MASTECS as end-user for the
automotive industry. Its main role was on setting automo-
tive requirements; providing a representative automotive case
study; and demonstrating the effectiveness and soundness of
the MTA toolchain during the evaluation.

Lynx Software Technologies specializes in real-time em-
bedded safety-critical software. Lynx’s contribution to the
project was the LynxSecure product – a type 1 (bare-metal)
hypervisor – as well as design, integration and support assis-
tance. Such a hypervisor provides robust space partitioning
without needing an RTOS, thus reducing HEM noise and
allowing ICH (time partitioning) to be studied with higher
fidelity. MASTECS used LynxSecure to partition the T2080
SoC’s RAM, cores, peripherals and L2 cache hardware into
bare-metal VMs.

VI. VMC CASE STUDY

This section provides a summary of the case study evaluated
including the platform where it runs, the particular instantia-
tion of the MASTECS tool chain to cover the case study’s
requirements, and the results obtained.

A. Introduction to the Case Study

The case study builds on a redundant Flight Control System
designed to replicate workload reduction applications at differ-
ent levels of the system architecture: integration unit (VMC)
and Single Board Computer (SBC). Each SBC board runs the
system in an Asymmetric Multi-Processing fashion (AMP),
and is able to deploy and run simultaneously mixed-criticality
applications with different assurance levels (DAL-A/C).

Figure 5 shows the software architecture implemented for
the VMC. Core 0 runs a process dedicated to I/O scheduling
and data marshalling using FIFO queues and shared memory
regions. The remaining cores of the SBC are dedicated to host
applications accessing I/O through the queues provided by
Core 0. Tasks are fully virtualized and executed on a Virtual
Machine (VM) by the LynxSecure hypervisor, providing task
domain isolation. The hypervisor allows the T2080’s cores
to be oversubscribed to host the 16 VMs of our case study.
Each hosting core runs a VCPU manager (blue circle) that
orchestrates and schedules computational tasks (green circles)
in a pre-defined order to enforce data flow consistency. Lynx’s
Z-Scheduler is used on each VCPU manager to implement

Fig. 5: Software architecture for each SBC of the VMC.

custom VM scheduling via time donation and as a convenient
integration point for the HEMs and RapiTime tool.

B. The Target Platform

The use case runs on an NXP T2080 processor [8], see Fig-
ure 6 which comprises 4 cores each its own private instruction
and data cache. The L2 cache, CCF and DDR memory are
shared among cores.

The LynxSecure hypervisor configures L2 cache using the
T2080’s hardware support for cache partitioning so that each
core gets access to one fourth of the 16 cache ways (i.e.
4 ways). To that end the proper values are set to registers
L2PIRn, L2PARn, and L2PWRn. In Figure 6 in the array in
the L2 block, rows represent cache sets and columns represent
cache ways.

Note that the CoreNet Coherence Fabric (CCF) is the main
SoC interconnect and along with and the memory controller
the focus for VMC case study. Interference caused by I/O
activity is not included in this study.

Fig. 6: Block Diagram of the main path from the cores to the
DDR memory in the T2080. D$ and I$ stand for data and
instruction caches, respectively; cci for core-cluster interface;
and CCF for CoreNet Coherency Fabric.

C. Tool Chain Instantiation

Below we summarize how the MASTECS toolchain has
been instantiated to address the VMC requirements.

À Hardware analysis: Hardware experts from BSC analyzed
the T2080 processor [14]. Since the L2 cache is partitioned
among cores it was concluded that it is not the main source
of contention. The main sources are the CCF and main



memory. Next, HEMs were identified to track activity on those
resources and specific micro-benchmarks were designed to
stress those resources. These include several counters in the
L2 cache and in the Bus Interface Unit.

Á Verification requirements: The particular requirements
addressed in the scope of the evaluation include:
• REQ1. Determine whether idle cores may generate some

noise: baseline time characterization experiments require
a pristine configuration. Such default configuration (CCS)
must ensure that no accesses are produced from unused
devices to any shared resources.

• REQ2. Determine the overhead of HEMs reading: an
accurate profiling of the tasks under analysis is fun-
damental to avoid incurring excessive probe effect and
to discard any potential outliers in the computation of
WCETs. The LynxSecure hypervisor, the PMUlib, and
RVS components are assessed and configured to provide
accurate instrumentation.

• REQ3. Assess the increase in execution time and HEM
values due to contention triggered by well-designed
micro-benchmarks: for this purpose, the taskset must be
instrumented and monitored both in isolation, to capture
application timing baseline, and under stress scenarios
where multicore timing interference arises.

• REQ4. Obtain early estimates of the impact of multicore
contention on the application timing behaviour: the TCM
shall allow the generation of task scheduling schemes
where interference and makespan are reduced.

Â Test Cases: In order to capture REQ1 and REQ2 we
designed test cases in which the task under analysis is run in
isolation. REQ3 and REQ4 also require experiments in mul-
ticore scenarios, which specific micro-benchmarks running in
different cores with or without the application under analysis.

Ã Test procedures and their execution: an executable test
procedure is generated for each test case allowing automated
execution of the test cases and collection of the results.

Ä-Å Test Results: The raw results are analyzed to assess
verification requirements incrementally. Results for REQ1 let
us assess whether idle cores generate noise due to any back-
ground activity. REQ2 results enable calibration that the HEMs
readings are accurate and a trustworthy building block for
MASTECS analyses. Finally evidence for REQ3 and REQ4
provides insight on the impact of contention.

D. Results

In the following we report the results from applying MAS-
TECS technology to fulfill verification requirements REQ1-4.
All experiments build on the use of RVS tool to collect timing
and relevant hardware events on the final VMC hardware
and software configuration. The RVS tool gathers information
at the desired granularity whilst the program under analysis
executes. In the scope of this case study, we instructed the
tool to automatically insert software instrumentation points for
all 16 processes. Since each process consists of distinct Read,
Computation and Write steps, information is collected at the
granularity of each step.

1) REQ1: In order to fulfill REQ1 we prepared an exper-
iment using the same same VM workload configuration used
in the final setup and a much simpler experimental setup in
which we execute a single micro-benchmark in one of the cpu
cores while the remaining ones are left idle. We run several
micro-benchmarks:
• RO1B. Micro-benchmark accessing and hitting one bank

of the L2 with read operations.
• WO1B. Micro-benchmark accessing and hitting one bank

of the L2 with write operations.
• RO4B. Micro-benchmark accessing and hitting in all

banks of the L2 with read operations.
• WO4B. Micro-benchmark accessing and hitting in all

banks of the L2 with write operations.
• RO. Micro-benchmark accessing and missing in the L2

and going to memory where it generates read operations.
• RW. Micro-benchmark accessing and missing in the L2

and going to memory where it generates read and write
operations.

We leverage the per-core (per-thread) counters in the L2
cache. By comparing the per-core, also known as local, HEMs
in the L2 with global counters we can assess whether the
other cores are generating additional activity. In particular, we
read the following global/per-thread hardware event pairs: L2
hits (456-global and 465-local), L2 misses (457-global and
466-local), L2 store allocates (460-global and 468-local), and
L2 data accesses (462-global and 470-local). In Table II we
present the results of the differences between each pair of
global and per-thread HEMs. As it can be seen the local
and global activity matches quite well which shows that the
only activity generated in the cache is that coming where the
micro-benchmark runs. The differences between global and
per-thread HEMs are lower than 0.69%, which shows that
noise from idle cores is negligible in the tested configuration.

TABLE II: Ratio between global and per-thread HEM pairs.

HEM L2Hit L2Miss L2StAlloc L2DataAcc
RO1B 0.20% 0.01% 0.00% 0.20%
WO1B 0.45% 0.13% 0.05% 0.56%
RO4B 0.03% 0.00% 0.00% 0.03%
WO4B 0.42% 0.29% 0.15% 0.68%
RO 0.21% 0.20% 0.06% 0.40%
RW 0.42% 0.30% 0.16% 0.69%

2) REQ2: To fulfill REQ2, we instructed RVS to collect
execution information on timing, instructions, and memory
accesses through local (per thread) and global (per plat-
form) hardware counters. In particular we instrumented a
dummy function on which we expect no activity and assessed
RVS+PMULib instrumentation overhead against a reference
scenario with minimal HEM manipulation (PMU only). At the
beginning and end of the function we read 6 on-core HEMs
gathered on the T2080 platform during the profiling exper-
iments. These are per-core HEMs Processor cycles (CYC,
001), Instructions completed (INS, 002), SGB promotions
(SGBP, 230), DLINK requests (DLINKR, 443) that are per
core HEMs; and the L2-related HEMs L2 misses per thread



(L2Mt, 466), L2 store allocates per thread (L2STAt, 468),
L2 Data accesses per thread (DL2At), and L2 Data misses
per thread (DL2Mt). Those were specifically selected as they
provide information on the instruction mix with emphasis on
the memory operations, requests to the DL1, L2, and memory.

Table III shows the values observed. With manual instru-
mentation using PMULib on top of LynxSecure we observe
minimal instruction overhead and no memory request. With
the automation provided by the RVS infrastructure we observe
very low absolute values that become negligible in relative
terms as soon as the instrumented function is in the order of
hundred of thousands of cycles, translating into micro-seconds.

TABLE III: Probe effect analysis. Instrumentation noise using
PMULib on top of different setup layers.

HEM CYC INST SGBP DLINKR L2Ht L2Mt L2STAt DL2At DL2Mt
.ID 1 2 230 443 465 466 468 470 472
.PMULib 21 5 0 0 0 0 0 0 0
.RVS 1129 1562 85 85 71 2 3 57 4

3) REQ3: In order to capture REQ3 we use RapiTime
to generate WCET estimates for each processes under both
isolation (cycles solo) and contention scenarios with the
RO and RW micro-benchmarks (RO sld and RW sld, re-
spectively). This involves executing tasks against tailored,
memory-aggressive micro-benchmarks, which are automati-
cally stubbed by RVS. We also report the slowdown captured
by RVS when the process is executed in the IFC, that is, with-
out micro-benchmarks and with the other processes running in
parallel (Parallel sld). Results are reported in Table IV.

We observe that the slowdown generated by the RO micro-
benchmark is generally low. In fact, most of the times, the
suffered interference is smaller than that observed in the IFC
(see Observed slowdown in Table V). The contention impact
of the RW micro-benchmark, instead, is always higher than
taht in the IFC, effectively upper bounding it.

In general, the slowdown generated by the micro-benchmark
is limited for the processes lasting longer and vice-versa. At
the extremes of the spectrum we find PROC6 that lasts millions
of cycles (10e6) and suffers a slowdown of only∼1.10 for both
core1 an core2; and PROC8 that lasts dozens of thousands
of cycles (10e4) and suffers slowdowns around 5.5x when is
contended against RW. As PROC8 has high density of access
to memory, it suffers high slowdown against the RW micro-
benchmark. However, PROC8 seems not to suffer contention
from the other running processes in the IFC. Finally, all
processes with a duration in the order of hundreds of thousands
of cycles (10e5) display slowdowns that range from 1.40 to
3.00x against the RW.

4) REQ4: A TCM tailored to VMC hardware and software
configuration has been developed and assessed in MASTECS.
In particular, the tool has been integrated together with a
scheduling and mapping optimization framework to provide
an early assessment of different deployment configurations and
identify those schedule scenarios that are not jeopardized by
multicore timing interference.

TABLE IV: Core 1 and 2 results under contention scenarios.
A single-core is activated with the process under analysis along
with RO and RW micro-benchmarks on Core 3.

Core 1 Core 2
Process Cycles in RO RW Cycles in RO RW

ID isolation slowdown slowdown isolation slowdown slowdown
PROC1(10e5) 733925 1.01 2.63 737283 1.01 2.57
PROC2(10e5) 370678 1.00 1.40 371201 1.00 1.40
PROC3(10e5) 746765 1.00 2.45 796911 1.00 2.41
PROC4(10e5) 160812 1.05 3.00 159425 1.05 2.98
PROC5(10e5) 736484 1.01 2.12 748450 1.01 2.06
PROC6(10e6) 3785988 1.00 1.10 3786251 1.00 1.09
PROC7(10e5) 740612 1.01 2.47 749216 1.00 2.44
PROC8(10e4) 57404 1.16 5.52 56599 1.16 5.51

In the following we evaluate the TCM bounds on an
example deployment scenario and schedule. The profiling
information on the VMC processes in isolation has been fed
to the TCM and the obtained analytical bounds on multicore
timing interference are assessed against maximum observed
slowdown in real experiments.

TABLE V: TCM bounds against observed values.

Core 1 Core 2
Process Time in Observed TCM Time in Observed TCM
ID Isolation Slowdown Bound Isolation Slowdown Bound
PROC1 733925 1.06 1.06 737283 1.07 1.06
PROC2 370678 1.01 1.17 371201 1.00 1.17
PROC3 746765 1.00 1.06 796911 1.00 1.06
PROC4 160812 1.06 1.67 159425 1.06 1.66
PROC5 736484 1.06 1.06 748450 1.07 1.06
PROC6 3785988 1.02 1.06 3786251 1.03 1.06
PROC7 740612 1.05 1.06 749216 1.06 1.06
PROC8 57404 1.03 2.62 56599 1.02 2.65

Table V reports the (maximum) observed and computed
relative slowdown suffered by each VMC process because of
contention. Results show the TCM results are generally upper-
bounding the impact of contention, modulo a ~1% tolerance
threshold due to unaccounted negligible activity on the VMC
Manager. While bounds are generally tight, in few cases the
TCM bound seem to be overly pessimistic (see PROC4 and
PROC8 in both cores). It should be noted, however, that
pessimism is only apparent as it is generally difficult to hit
the worst-case contention scenthose cases, namely PROC8 in
both cores, correspond to short, memory intensive tasks (with
∼10% of instructions being memory accesses) where relative
impact of memory accesses is extremely large and so is the
maximum impact of contention, which is not easy to trigger
with simple observations.

VII. PERSPECTIVE

The MASTECS project partners have achieved success in
bringing the technologies to a good commercial position and
technical maturity, providing a foundation for deployment of
the MASTECS methodology in support of certification of
emerging aircraft systems.

The key to achieving industry-wide benefit from these tools
and techniques is to ensure that the technology and commercial
models enable the manufacturers and users to build on and



share best practice. For example, using a standardized process
that is familiar to certification authorities reduces risk of failing
to achieve certification, repeatable automation abstracts from
the challenges of low-level testing making it economic, and
reusable IP designed and tested/qualified for use in high-
integrity systems means a faster time to market.

The automotive and aerospace case studies were highly
valuable in providing feedback to the technologies and guiding
the process of “productization”, helping to steer the technology
partners in meeting the needs of real aerospace and automotive
projects - this is an example of sharing best practice to benefit
the whole industry.

The significant challenges of building safety-critical systems
on multicore technology will continue. As new platforms
appear with new performance enhancing features (such as
multi-level caches, DMA, decentralized interconnects, GPU
and other accelerators) the technology required to support
them will continue to develop too, building on the baselines
in this paper. Expect many more developments in this area.

VIII. CONCLUSIONS

The pursuit of increased performance in critical domains
is relentless, and the avionics domain is not an exception.
Advanced increased-autonomy related features like Advanced
Air Mobility and Single Pilot Operation, require unprece-
dented levels of computing performance. The use of multicore
processors is the main path followed to provide the required
performance. The other side of the coin is that multicores
bring their own challenges including software timing analysis.
In this work we have presented the MASTECS Multicore
Timing Analysis methodology and tools. We also showed its
application to an avionics case study. Both help assessing how
MASTECS technology helps achieving CAST32-A/A(M)C20-
193 requirements.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Ministry of
Science and Innovation under grant PID2019-107255GBC21/
AEI/10.13039/501100011033 and the European Unions Hori-
zon 2020 Framework Programme under grant agreement No.
878752 (MASTECS).

REFERENCES

[1] MASTECS: Multicore analysis service and tools for embedded critical
systems. https://mastecs-project.eu/.

[2] Jaume Abella, Carles Hernández, Eduardo Quiñones, Francisco J. Ca-
zorla, Philippa Ryan Conmy, Mikel Azkarate-askasua, Jon Pérez, Enrico
Mezzetti, and Tullio Vardanega. WCET analysis methods: Pitfalls and
challenges on their trustworthiness. In 10th IEEE International Sym-
posium on Industrial Embedded Systems, SIES 2015, Siegen, Germany,
June 8-10, 2015, pages 39–48. IEEE, 2015. doi:10.1109/SIES.
2015.7185039.

[3] Javier Barrera, Leonidas Kosmidis, Hamid Tabani, Enrico Mezzetti,
Jaume Abella, Mikel Fernández, Guillem Bernat, and Francisco J.
Cazorla. On the reliability of hardware event monitors in mpsocs
for critical domains. In Chih-Cheng Hung, Tomás Cerný, Dongwan
Shin, and Alessio Bechini, editors, SAC ’20: The 35th ACM/SIGAPP
Symposium on Applied Computing, online event, [Brno, Czech Re-
public], March 30 - April 3, 2020, pages 580–589. ACM, 2020.
doi:10.1145/3341105.3373955.

[4] Frederic Boniol, Youcef Bouchebaba, Julien Brunel, Kevin Delmas, and
Alfonso Mascarenas Gonzalez. PHYLOG certification methodology: a
sane way to embed multi-core processors. In 10th European Congress
Embedded Real Time Systems, ERTS 2020, Jan-Feb 2020, 2020.

[5] European Union Aviation Safety Agency. Notice of Proposed Amend-
ment 2020-09. https://www.easa.europa.eu/sites/default/files/dfu/npa
2020-09 0.pdf, 2020.

[6] Federal Aviation Administration, Certification Authorities Software
Team (CAST). CAST-32A Multi-core Processors, 2016.

[7] Freescale semicondutor. e6500 Core Reference Manual. https://www.
nxp.com/docs/en/reference-manual/E6500RM.pdf, 2014. E6500RM.
Rev 0. 06/2014.

[8] Freescale semicondutor. QorIQ T2080 Reference Manual, 2016. Also
supports T2081. Document Number: T2080RM. Rev. 3, 11/2016.

[9] Scott Gerhold, Mike Dunham, and Branden Sletteland. Alternative
multi-core processor considerations for aviation. In AHS International
74th Annual Forum & Technology Display, Phoenix, Arizona, USA, May
14-17, 2018, 2018.

[10] Sylvain Girbal, Jimmy Le Rhun, and Hadi Saoud. METrICS: a
Measurement Environment For Multi-Core Time Critical Systems. In
9th European Congress Embedded Real Time Systems, ERTS. Jan-Feb
2018, 2018.

[11] Laurence H. Mutuel, Xavier Jean, Vincent Brindejonc, Anthony Roger,
Thomas Megel, and E. Alepins. Assurance of multicore processors in
airborne systems. DOT/FAA/TC-16/51, Federal Aviation Administra-
tion, 2017.

[12] Xavier Palomo, Mikel Fernández, Sylvain Girbal, Enrico Mezzetti,
Jaume Abella, Francisco J. Cazorla, and Laurent Rioux. Tracing
hardware monitors in the GR712RC multicore platform: Challenges and
lessons learnt from a space case study. In 32nd Euromicro Conference on
Real-Time Systems, ECRTS 2020, July 7-10, 2020, Virtual Conference,
volume 165 of LIPIcs, pages 15:1–15:25, 2020.

[13] Xavier Palomo, Enrico Mezzetti, Jaume Abella, Reinder J. Bril, and
Francisco J. Cazorla. Accurate ilp-based contention modeling on
statically scheduled multicore systems. In 25th IEEE Real-Time and
Embedded Technology and Applications Symposium, RTAS 2019, Mon-
treal, QC, Canada, April 16-18, 2019, 2019.

[14] Roger Pujol, Hamid Tabani, Jaume Abella, Mohamed Hassan, and
Francisco J. Cazorla. Empirical evidence for mpsocs in critical systems:
The case of NXP’s T2080 cache coherence. In 2021 Design, Automation
Test in Europe Conference Exhibition (DATE), pages 1162–1165, 2021.
doi:10.23919/DATE51398.2021.9474078.

[15] David Radack, Harold G. Tiedeman, and Paul Parkinson. Civil certifica-
tion of multi-core processing systems in commercial avionics. Technical
report, Rockwell Collins, 2018.

[16] NXP Semiconductors. Chip Errata for the i.MX 6SLL. Document
Number: IMX6SLLCE, 2019.

[17] Alejandro Serrano-Cases, Juan M. Reina, Jaume Abella, Enrico
Mezzetti, and Francisco J. Cazorla. Leveraging hardware qos to
control contention in the xilinx zynq ultrascale+ mpsoc. In Björn B.
Brandenburg, editor, 33rd Euromicro Conference on Real-Time Systems,
ECRTS 2021, July 5-9, 2021, Virtual Conference, 2021.

[18] Hamid Tabani, Leonidas Kosmidis, Jaume Abella, Francisco J. Ca-
zorla, and Guillem Bernat. Assessing the adherence of an industrial
autonomous driving framework to ISO 26262 software guidelines. In
Proceedings of the 56th Annual Design Automation Conference 2019,
DAC 2019, Las Vegas, NV, USA, June 02-06, 2019, page 9. ACM, 2019.
doi:10.1145/3316781.3317779.

[19] Reinhard Wilhelm. Mixed feelings about mixed criticality (invited pa-
per). In Florian Brandner, editor, 18th International Workshop on Worst-
Case Execution Time Analysis, WCET 2018, July 3, 2018, Barcelona,
Spain, volume 63 of OASICS, pages 1:1–1:9. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2018. doi:10.4230/OASIcs.
WCET.2018.1.

[20] Frank Wolfe. EASA and FAA to issue further guidance
on multicore certification this year. Aviation Today, February
2020. URL: https://www.aviationtoday.com/2020/02/28/easa-and-faa-
to-issue-further-guidance-on-multicore-certification-this-year/.

[21] Xilinx. Zynq UltraScale+ MPSoC, APU - PMU Counter Values Might
Be Inaccurate When Monitoring Certain Events. Document Number:
AR# 68878, 2017.

https://mastecs-project.eu/
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1109/SIES.2015.7185039
https://doi.org/10.1145/3341105.3373955
https://www.easa.europa.eu/sites/default/files/dfu/npa_2020-09_0.pdf
https://www.easa.europa.eu/sites/default/files/dfu/npa_2020-09_0.pdf
https://www.nxp.com/docs/en/reference-manual/E6500RM.pdf
https://www.nxp.com/docs/en/reference-manual/E6500RM.pdf
https://doi.org/10.23919/DATE51398.2021.9474078
https://doi.org/10.1145/3316781.3317779
https://doi.org/10.4230/OASIcs.WCET.2018.1
https://doi.org/10.4230/OASIcs.WCET.2018.1
https://www.aviationtoday.com/2020/02/28/easa-and-faa -to-issue-further-guidance-on-multicore-certification-this-year/
https://www.aviationtoday.com/2020/02/28/easa-and-faa -to-issue-further-guidance-on-multicore-certification-this-year/

	Introduction
	Positioning
	MASTECS MTA Methodology
	Platform Analyses
	IFC Seclection
	V Model

	MASTECS MTA Toolchain
	Hardware Analysis
	Multicore Micro-Benchmark Technology
	Task Contention Model
	RapiTest
	RapiTime
	RVS Reporting Tools
	RVS Report Viewer
	RVS Exporter


	MASTECS Partners
	VMC Case Study
	Introduction to the Case Study
	The Target Platform
	Tool Chain Instantiation
	Results
	REQ1
	REQ2
	REQ3
	REQ4


	Perspective
	Conclusions 
	References

